RESPONSE OF SOME MEDICINAL PLANTS TO INOCULATION WITH ASYMBIOTIC N2-FIXERS

By

MOHAMED SAID EL-SAYED SHAR

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science

(Agricultural Microbiology)

61476

Department of Agricultural Microbiology

Faculty of Agriculture

Ain Shams University

1995

Approval Sheet RESPONSE OF SOME MEDICINAL PLANTS TO INOCULATION WITH ASYMBIOTIC N2-FIXERS

By

MOHAMED SAID EL-SAVED SHARAF

B.Sc. (Agric. Microbiol), 1977, Ain Shams University M.Sc. (Agric. Microbiol.), 1985, Ain Shams University

This Thesis for Ph.D Degree has been approved by:

Prof. Dr.Rabie Mohamed El-Shahawy

Prof. of Agric . Microbiology, Fac. Agric. Cairo University, El - Fayum Branch. S. A. Zedan

Prof. Dr. Saad Ali Zaki Mahmoud

Prof. of Agric. Microbiol., Dept. of Agric. Microbiol., Fac. Agric., Ain Shams University.

Prof. Dr. Mohamed El Sawy Moubarek

Prof. of Agric . Microbiol., Dept. of Agric. Microbiol., Fac. (Supervisor) Agric., Ain Shams University.

Date of examination: / / 1995

RESPONSE OF SOME MEDICINAL PLANTS TO INOCULATION WITH ASYMBIOTIC N2-FIXERS

By

MOHAMED SAID EL-SAYED SHARAF

B.Sc. (Agric. Microbiol.), 1977, Ain Shams University M.Sc. (Agric. Microbiol.), 1985, Ain shams University

Under supervision of

Prof. Dr. M. El-Sawy

Prof. of Agric. Microbiology, Dept. of Agric. Microbiol., Fac. Agric., Ain Shams University

Prof. Dr. E.A. Saleh

Prof. of Agric. Microbiology, Dept. of Agric. Microbiol., Fac. Agric., Ain Shams University.

Dr. T.H. Nokhal

Lecturer of Agric.Microbiology, Dept. of Agric. Microbiol., Fac. Agric., Ain Shams University

ABSTRACT

This study was carried out to investigate the distribution of some wild plants in Egyptian deserts and their rhizospheric microbial content (total microbes, azotobacters and azospirilla). Three localities were subjected to investigation namely, a) The area around Cairo-Suez desertic way representing east Cairo desert, b) The area around Cairo-Fayum desertic way representing west Cairo desert, and c) The area around Cairo-Alexandria desertic way representing north-west Cairo desert. The collected plants were identified to throw some light on the presence of wild herbs in those deserts.

In trials to improve the growth and to maximize the production of medical substances by two medicinal plants, two field experiments were carried out, to evaluate the effect of inoculation with asymbiotic diazotrophs (*Azotobacter* and *Azospirillum*), in comparison to the symbiotic one (*Bradyrhizobium*), inoculation with VA mycorrhizae, supplementation with different forms and doses of P-fertilizers and amendment with different doses of inorganic N-fertilizer, on the growth, rhizospheric microbial densities, N₂- ase activity, plant N and P-contents, mycorrhizal root infection and the content of medical substances of *Datura stramonium* and *Ammi visnaga*. These experiments were carried out in the presence of 0.5% garbage compost, as an organic manure.

The obtained results clearly show that inoculation with a mixture of azotobacters and azospirilla, amendment with the full doses of rockphosphate and inorganic N-fertilizer, in combination with VAM inoculation, remarkably improved the growth of both medicinal plants (Datura and Ammi) and increased their contents of alkaloids and khellin respectively.

Key Words: Medicinal plants, Datura stramonium, Ammi visnaga, diazotrophs, Azotobacter, Azospirillum, Bradyrhizobium, VA mycorrhizae.

ACKNOWLEDGMENT

Praise and thanks be to ALLAH, the most menciful for assisting and directing me to the right way.

This work has been carried out under the supervision and direction of **Prof. Dr. M.El-Sawy**, **Prof. Dr. E.A. Saleh**, Professors of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. Agric., Ain Shams University and **Dr. T. H. Nokhal** Lecturer of Agric. Microbiol. in the same Department. I wish to express my deepest gratitude to them for suggesting the problem, supervision, keeping interest and progressive criticism.

I am grateful to **Prof. Dr. I. Fendrik**, Prof. of Biophysics, Institute of Biophysics, Hannover Univ., Germany, for supervision, valuable help and guidance offered through the work in his laboratory.

Sincere thanks are due to **Prof. Dr. M.A. El-Borollosy**, Prof. of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. Agric., Ain-Shams Univ. for his help in preparing the manuscript, and to **Dr. M. E. El-Demerdash**, Associate Prof. at the same Department for providing the experimental area (El-Khatatba, Beheira) and encouragement.

Thanks are also extended to all my colleagues and staff members of the Department of Agric. Microbiol., Fac. Agric., Ain-Shams Univ. for providing facilities and untiring help.

LIST OF CONTENTS

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
2.1.	Occurrence of free living diazotrophs in natural habitates	3
2.2.	Free-living N ₂ -fixers in desert grass root zones	13
2.3.	Quantitative estimates of nitrogen fixation in the	
	rhizosphere	15
2.4.	Plant response to inoculation with N2-fixing bacteria and	
	VA-mycorrhizae	18
2.5.	Medicinal plants	28
3.	MATERIAL AND METHODS	35
3.1.	Determination of the distribution of free-living nitrogen	
	fixers in the rhizosphere of Egyptian desert plants	35
3.2.	Media used	37
3.3.	Field experiments	39
3.4.	Inoculation procedures	43
3.5.	Physical and chemical determinations	45
3.6.	Assessement of root mycorrhizal infection	47
3.7.	Extraction and determination of Alkaloids and khellin	
4	RESULTS	
4.1.	A survey study on the distribution of wild plants in	
	Egyptian deserts and their rhizospheric microbial	
	content	. 52

		Page
4.2.	Studies on Datura stramonium	57
4.2.1.	Effect of inoculation with diazotrophs, VAM, inorganic	
	nitrogen and phosphorus fertilization on the growth of	
	Datura stramonium	57
4.2.1.1.	Plant height	59
4.2.1.2.	Number of leaves per plant	59
4.2.1.3.	Number of lateral branches.	62
4.2.1.4.	Stem diameter	62
4.2.1.5.	Weight of shoots	65
4.2.1.6.	Weight of roots	68
4.2.2.	Effect of inoculation with diazotrophs, VAM, inorganic	
	nitrogen and phosphorus fertilization on Datura	
	stramonium N,P and alkaloids content	68
4.2.2.1.	Nitrogen	68
4.2.2.2.	Phosphorus	72
4.2.2.3.	Alkaloids	74
4.2.3.	Effect of inoculation with diazotrophs, VAM, inorganic	
	nitrogen and phosphorus fertilization on mycorrhizal root	
	infection, microbial content and N2-ase activity in	
	rhizosphere of Datura stramonium.	76
4.2.3.1.	Mycorrhizal root infection	76
4,2.3.2.	Microbial densities	76
4.2.3.2.1.	Total microbial densities	78

		Page
4.2.3.2.2.	Densities of azotobacters	78
4.2.3.2.2.	Densities of azospirilla	83
4.2.3.2.3.	Nitrogenase activity	86
	Studies on Ammi visnaga	86
4.3.	Effect of inoculation with diazotrophs, VAM, inorganic	
4.3.1.	nitrogen and phosphorus fertilization on the growth of	
	Ammi visnaga	86
4.3.1.1.	Plant height	88
4.3.1.2.	Number of umbels per plant	88
4.3.1.3.	Weight of shoots	91
4.3.1.4.	Weight of roots	91
4.3.2.	Effect of inoculation with diazotrophs, VAM, inorganic	
4.0,2,	nitrogen and phosphorus fertilization on Ammi visnaga N,P	
	and khellin content	96
4,3,2.1.	Nitrogen	96
4.3.2.2.	Phosphorus	98
4.3.2.3.	Khellin	98
4.3.3.	Effect of inoculation with diazortophs, VAM, inorganic	
	nitrogen and phosphorus fertilization on mycorrhizal roo	t
	infection, microbial content and N2-ase activity in	
	rhizosphere of Ammi visnaga	. 101
4.3.3.1.	Mycorrhizal root infection	
4.3,3.2.	Microbial densities	

		Page
4,3.3.2.1.	Total microbial densities	103
4.3.3.2.2.	Densities of azotobacters	106
4,3,3.2.3.	Densities of azospirilla	106
4.3.3.3.	Nitrogenase activity	111
5.	DISCUSSION	113
6.	SUMMARY	120
7.	REFERENCES	129
	ADARIC SUMMARY	١

LIST OF TABLES

No. of Table		Page
Table (1)	Physical and chemical properties of soil of investigated	27
	areas	36
Table (2)	Soil physical and chemical properties of experimental	
	area (El Khatatba, Beheira governorate)	42
Table (3)	Densities of azotobacters and azospirilla in soil and	
	rhizosphere of desert plants growing wildly around Cairo	
	- Suez desert way	54
Table (4)	Densities of azotobacters and azospirilla in soil and	
	rhizosphere of desert plants growing wildly around Cairo	
	- Fayum desert way	56
Table (5)	Densities of azotobacters and azospirilla in soil and	
	rhizosphere of desert plants growing wildly around	
	Cairo-Alexandria desert way	58
Table (6)	Plant height of Datura stramonium as influenced by	
140.0 (-)	inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	
	of phosphate fertilizers and half or full dose of inorganic	
	N fertilizer	60
Table (7)	Number of leaves of Datura stramonium as influenced	l
rable (+)	by inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	
	of phosphate fertilizers and half or full dose of inorganic	
	N fertilizer	/ 1

No. of Table		Page
Table (8)	Number of lateral branches of Datura stramonium as	
	influenced by inoculation with diazotrophic bacteria	
	and/or VA mycorrhizae in the presence or absence of	
	different forms of phosphate fertilizers and half or full	
	dose of inorganic N fertilizer	63
Table (9)	Stem diameter of Datura stramonium as influenced by	
	inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	
	of phosphate fertilizers and half or full dose of inorganic	
	N fertilizer	64
Table (10)	Fresh weight of Datura stramonium shoots as influenced	
` '	by inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	
	of phosphate fertilizers and half or full dose of inorganic	
	N fertilizer	66
Table (11)	Dry weight of Datura stramonium shoots as influenced	
	by inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	
	of phosphate fertilizers and half or full dose of inorganic	
	N fertilizer	67
Table (12)	Fresh weight of Datura stramonium roots as influenced	
,	by inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	3
	of phosphate fertilizers and half or full dose of inorganic	
	N fertilizer	7.0

No. of Table	Ps	age
Table (13)	Dry weight of Datura stramonium roots as influenced by	
. 4010 (12)	inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	
	of phosphate fertilizers and half or full dose of inorganic	
		70
Table (14)	Nitrogen content of Datura stramonium as influenced by	
ruoto (x t)	inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	
	of phosphate fertilizers and half or full dose of inorganic	
	N fertilizer	72
Table (15)	Phosphorus content of Datura stramonium as influenced	
14070 (14)	by inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	
	of phosphate fertilizers and half or full dose of inorganic	
	N fertilizer	73
Table (16)	Content of alkaloids of Datura stramonium as influenced	
14010 (7-1)	by inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	
	of phosphate fertilizers and half or full dose of inorganic	
	N fertilizer	75
Table (17)	Mycorrhizal infection of Datura stramonium as	
· · /	influenced by inoculation with diazotrophic bacteria	
	and/or VA mycorrhizae in the presence or absence of	
	different forms of phosphate fertilizers and half or full	
	dose of inorganic N fertilizer	77

No. of Table		Page
Table (18)	Total microbial count in rhizosphere of Datura	
	stramonium as influenced by inoculation with	
	diazotrophic bacteria and/or VA mycorrhizae in the	
	presence or absence of different forms of phosphate	
	fertilizers and half or full dose of inorganic N	
	fertilizer	79
Table (19)	Total microbial count in soil-apart of Datura stramonium	
	as influenced by inoculation with diazotrophic bacteria	
	and/or VA mycorrhizae in the presence or absence of	
	different forms of phosphate fertilizers and half or full	
	dose of inorganic N fertilizer	80
Table (20)	Most probable number of azotobacters in rhizosphere of	
	Datura stramonium as influenced by inoculation with	
	diazotrophic bacteria and/or VA mycorrhizae in the	
	presence or absence of different forms of phosphate	
	fertilizers and half or full dose of inorganic N	
	fertilizer	81
Table (21)	Most probable number of azotobacters in soil-apart of	
	Datura stramonium as influenced by inoculation with	ì
	diazotrophic bacteria and/or VA mycorrhizae in the	
	presence or absence of different forms of phosphate	
	fertilizers and half or full dose of inorganic N	
	fertilizer	82

No. of Table		Page
Table (22)	Most probable number of azospirilla in rhizosphere of	
	Datura stramonium as influenced by inoculation with	
	diazotrophic bacteria and/or VA mycorrhizae in the	
	presence or absence of different forms of phosphate	
	fertilizers and half or full dose of inorganic N	
	fertilizer	84
Table (23)	Most probable number of azospirilla in soil-apart of	
	Datura stramonium as influenced by inoculation with	
	diazotrophic bacteria and/or VA mycorrhizae in the	
	presence or absence of different forms of phosphate	
	fertilizers and half or full dose of inorganic N	
	fertilizer	85
Table (24)	Nitrogenase activity in Datura stramonium rhizosphere	
	as influenced by inoculation with diazotrophic bacteria	
	and/or VA mycorrhizae in the presence or absence of	
	different forms of phosphate fertilizers and half or full	
	dose of inorganic N fertilizer	87
Table (25)	Plant height of Ammi visnaga as influenced by	
	inoculation with diazotrophic bacteria and/or VA	
	mycorrhizae in the presence or absence of different forms	
	of phosphate fertilizers and half or full dose of inorganic	
	N fertilizer	89