BIOLOGICAL AND ECOLOGICAL STUDIES ON CERTAIN PARASITOIDS OF CORN BORERS

ву

MAHMOUD MAHAMED EL-SAIED SALEH

A thesis submitted in partial fulfilment

οf

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

632.52. Agricultural Science (Entomology)

Department of Plant Protection Factulty of Agriculture Ain Shams University

1992

Approval Sheet

BIOLOGICAL AND ECOLOGICAL STUDIES ON CERTAIN PARASITOIDS OF CORN BORERS

Ву

MAHMOUD MOHAMED EL-SAIED SALEH

B.SC. Agriculture (Entomology) 1976
M.Sc. Agriculture (Entomology) 1986

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Hussien Samir Abdul Rahman Salama Prof. of Entomology, National Research Center

Prof. Dr. George Nosralla Rizk

Prof. of Economic Entomology, Fac. of Agric,

Ain Shams Univ.

Prof. Dr. Ahmed Ali Gomaa

Prof. of Economic Entomology, Fac. of Agric,
Ain Shams Univ.

Date of examination: 14/7/1992.

In the name of Allah, the Greatful, the Merciful.

Peace and blessings be upon Mohamed, the prophit

of Allah. May Allah accept this work for his sake

and benifit anyone who reads it.

ACKNOWLEDGEMENT

My grateful thanks are due to Prof. Dr. Gamil B. El-Saadany and Prof. Dr. Ahmed Ali Gomaa , Professors of Economic Entomology, Faculty of Agriculture, Ain Shams University for suggesting the problem, kind help, positive effort in supervising the work and continuous encouragement.

Deepest thanks and gratitude to Prof. Dr. Fayez N. Zaki, Professor of Entomology, National Research Center for providing the facilities of the research and his vital guidance and indispendable support.

The author is also indepted to Prof. Dr. Leslie C. Lewis and Dr. John J. Obrycki, Department of Entomology, Iowa State University, Iowa, U.S.A. for their invaluable help and keen effort in directing the experiments in U.S.A.

Ultimate thanks and gratitude to my colleagues in Pests and Plant Protection Department, National Research Center.

BIOLOGICAL AND ECOLOGICAL STUDIES ON CERTAIN PARASITOIDS OF CORN BORERS

Ву

MAHMOUD MOHAMED EL-SAIED SALEH

B.Sc. Agriculture (Entomology) 1976

M.Sc. Agriculture (Entomology) 1986

Under the Supervision of: Prof. Dr. Gamil Burhan El-Din El-Saadany

Prof. Dr. Ahmed Ali Gomaa

Prof. Dr. Fayez Nazir Zaki

Abstract

Biological and ecological studies serving the mass rearing and field utilization of the ectolarval parasitoid <u>Bracon previcornis</u> and the egg parasitoid <u>Trichogrammaa nubilale</u> in suppressing the corn bores were carried out in Egypt and U.S.A.

Studies on B. brevicornis included biological aspects of the parasitoid on the host larvae of Ostrinia nubilalis, the attraction of the parasitoid to the kairomones of O. nubilalis and Sesamia cretica larvae as well as the sex pheromone of O. nubilalis. A simple and economic technique for mass rearing the parasitoid on the host larvae of O. nubilalis has been achieved. A method for

preserving the parasitoid adults for up to 18 weeks has been given. The interaction between B. <u>brevicornis</u> and the pathogenic microsporidium <u>Nosema pyrausta</u> was also studied. Several field release studies were conducted aiming to evaluate and enhance the role of <u>B</u>. <u>brevicornis</u> in the biological control of corn borer larvae either during the hibernation or the active season. The parasitoid showed considerable efficiency in suppressing the larvae of <u>O</u>. <u>nubilalis</u> as well as <u>S</u>. <u>cretica</u> in the field. The application of the kairomone of <u>S</u>. <u>cretica</u> larvae or the molasses (10%) enhanced the efficiency of the released parasitoids in the field.

Studies on <u>T</u>. <u>nubilale</u> revealed that the infection with the microsporidium <u>N</u>. <u>pyrausta</u> had some adverse effects on the parasitoid development. It reduced the number and the body size of the parasitoids as well as their efficiency in suppressing the European corn borer in the field. The combined effect of the egg parasitoid and the microsporidium in suppressing the European corn borer was studied. The parasitoid was more effective than the microsporidium in the field.

CONTENTS

Page
1
4
4
17
38
21
22
22
22
22
23
<u> </u>
24
29
25
25
29
30
30
.31

	Page
1.5.2. Effect of host population density	
on the rate of parasitism	32
1.5.3. Effect of frequency of release on	
the rate of parasitism	33
1.5.4. Effect of different rates of release	
on parasitism	33
1.5.5. Effect of kairomones on parasitism	34
1.5.6. Effect of molasses on the activity	
of B.brevicornis	34
1.5.7. Parasitism by released B.brevicornis	
wasps on active corn borer larvae	
in growing maize plants	35
1.6. The impact of Nosema pyrausta on B.	
brevicornis	36
2. Studies on Trichogramma nubilale	37
2.1. Preference and suitability of N.pyrausta-	
infected O. nubilalis eggs for parasitism	
by T.nubilale	37
2.2. Combined effect of T. nubilale and N.	
pyrausta in suppressing O.nubilalis larvae	
in corn fields	39
IV. RESULTS	41
1. Studies on Bracon brevicornis	·
1.1. Biology of B.brevicornis on O.nubilalis	
larvae	4]
1.1.1. Progeny production	43

		Page
	Progeny body size	45
1.1.3.	Optimal parasitoid-host-time ratio .	48
1.1.4.	Effect of crowding on the parasitoid	
	egg deposition	52
1.1.5.	Effect of the sex ratio of parasitoid	
	parents on the egg deposition and the	
	sex ratio of their progeny	54
1.1.6.	Effect of mating on the parasitoid	
	egg deposition and progeny production	57
1.2. Attra	action of B.brevicornis adults to	
kairo	omones and a sex pheromone	60
1.3. Stora	age of B.brevicornis	63
1.4. Field	d release of B.brevicornis	63
1.4.1.	Parasitism by B.brevicornis on	
	hibernating O.nubilalis and S.cretica	
	larvae in stored corn stalks	6.3
1.4.2.	Effect of host population density on	
	parasitism by B. brevicornis	67
1.4.3.	Effect of frequency of release on	
	parasitism by B.brevicornis	72
1.4.4.	Effect of rate of release on the rate	
	of parasitism	75
1.4.5.	Effect of kairomones on the rate	
	of parasitism	78
1.4.6.	Effect of molasses on the rate of	
	parasitism	78
		78

	Page
1.4.7. Rate of parasitism by B.brevicornis on	
active larvae of <u>S.cretica</u> in growing	
maize plants	82
1.5. The impact of Nosema pyrausta on \underline{B} .	
brevicornis	84
2. Studies on Trichogramma nubilale	87
2.1. Preference and suitability of N.pyrausta-	
infected O. nubilalis eggs for parasitism	
by <u>T.nubilale</u>	87
2.2. Efficacy of N.pyrausta-infected T.nubilale	
wasps in parasitizing O. <u>nubilalis</u> eggs in	
the field	91
2.3. The combined effect of \underline{T} . $\underline{nubilale}$ amd \underline{N} .	
pyrausta in suppressing O. nubilalis in	
the field	95
V DISCUSSION	99
VI SUMMARY	111
VII REFERENCES	11.9
ARARIC CHMMARY	

LIST OF TABLES

	I	?age
1.	Host range and geographical distribution of \underline{B} .	
	breviçornis	;
2.	The tested P (parasitoid females)-H (host larvae)-	
	T (expousure time in days) ratios to determine the	
	optimal ratio(s) for rearing \underline{B} . $\underline{brevicornis}$ on \underline{O} .	
	nubilalis	2.3
3.	Numbers of B. brevicornis progeny produced from	
	O. nubilalis larvae at certain rates of parasitoid	
	eggs per host larva4	2
4.	Body dimensions of B. brevicornis females produced	
	from O. nubilalis larvae at different rates of	
	parasitoid eggs per host larva4	6
5.	Numbers of B. brevicornis eggs laid on O. nubilalis	
	larvae at different ratios of parasitoid (P)- host	
	(H) - expausure time in days (T)50)
6.	Effect of crowding of \underline{B} . brevicornis wasps and \underline{O} .	
	nubilalis larvae on the parasitoid egg deposition	3
7.	Effect of the sex ratio of \underline{B} . $\underline{brevicornis}$ parents	
	on the egg deposition and the sex ratio of their	
	progeny)
8.	Egg deposition and progeny production of mated and	
	unmated B. brevicornis females	i
9.	Numbers of \underline{B} , <u>brevicornis</u> adults attracted to	
	kairomones of <u>O</u> . <u>nubilalis</u> and <u>S</u> . <u>cretica</u> larvae61	

		Pag
10	. Numbers of $\underline{\mathtt{B}}$. $\underline{\mathtt{brevicornis}}$ adults attracted to sex	
	pheromone of <u>O. nubilalis</u>	61
11	. Effect of storage period on the survival rate and	
	the fecundity of B. brevicornis adults	64
12	. Parasitism by B. brevicornis wasps released on Q .	
	numbilalis and S. cretica larvae in stored corn	
	stalks	66
13.	. Natural parasitism by B. brevicornis on two larval	
	populations of O. nubilalis in stored corn stalks	
	in Dakahlia	68
14.	Parasitism after releasing B. brevicornis wasps on	
	three populations of <u>O</u> . <u>nubilalis</u> larvae in stored	
	corn stalks in Dakahlia	69
15.	Effect of frequency of releasing B. brevicornis	~ ,
	wasps on O. nubilalis larvae in corn stalks	73
16.	Parasitism by released B. brevicornis wasps on	, ,
	hibernating O. <u>nubilalis</u> larvae in stored corn	
	stalks at different rates of release	76
17.	Effect of kairomones from certain larval species on	70
	parasitism by B. <u>brevicornis</u> on O. <u>nubilalis</u> larvae	
	in stored corn stalks	-7
18.	Effect of molasses on parasitism by <u>B. brevicornis</u>	79
	on <u>O</u> . <u>nubilalis</u> larvae in stored corn stalks	
19.	Parasitism by released <u>B. brevicornis</u> wasps on	80
	larval population of <u>S. cretica</u> in a corn field in	
	Giza	

		Page
20.	Effect of N . pyrausta infection on some biological	
	aspects of \underline{B} . $\underline{brevicornis}$ as well as the weight of	
	O. nubilalis host larvae	85
21.	Comparison of $\underline{\mathbf{T}}$. $\underline{\mathbf{nubilale}}$ parasitism and adult	
	emergence between N. pyrausta infected and uninf-	
	ected O. <u>nubilalis</u> eggs	88
22.	Comparison of body dimensions of \underline{T} . $\underline{nubilale}$	
	females emerging from N. pyrausta-infected and	
	uninfected O. nubilalis eggs	89
23.	Effect of N. pyrausta infection on the weight of	
	O. nubilalis eggs	90
24.	Rate of parasitism by N . pyrausta-infected and	
	uninfected T. nubilale wasps on N. pyrausta-	
	infected and uninfected O. nubilalis eggs after 2	
	and 5 days of releasing the parasitoids in the	
	field	92
25.	Rate of parasitism by N . pyrausta-infected and	
	uninfected T. <u>nubilale</u> wasps on O. <u>nubilalis</u> eggs	
	after 2 and 5 days of releasing the parasitoids in	
	the field	93
26.	Numbers of <u>O</u> . <u>nubilalis</u> larvae and lengthes of	
	tunnels in corn plants after applying T. nubilale	
	in combination with N. pyrausta in the field	96

LIST OF FIGURES

		Page
1	. Oviposition dish (20 cm in diameter) used in the	
	rearing of B. brevicornis on O. nubilalis	• 28
2	. The method of collecting the emerged adults of	
	B. brevicornis from the parasitized larvae	• 28
3.	. Numbers of B. brevicornis progeny produced from O.	
	nubilalis larva at certain rates of parasitoid eggs	
	per host larva	4.3
4.	Regression of numbers of \underline{B} . $\underline{brevicornis}$ eggs per \underline{O} .	
	nubilalis larvae Vs. percentage of parasitoid adults	;
	energing from these larvae	44
5.	Body size (multiplication of length X width in mm)	
	of B. brevicornis females produced from O. nubilalis	<u> </u>
	larvae at different rates of parasitoid eggs per	
	host larva	47
6.	Regressions of number of B. brevicornis progeny	
	produced from O. nubilalis larvae and the body size	
	of these progeny Vs. number of parasitoid eggs per	
	host larva. The vertical line passes the maximum	
	quantity and the best possible quality (indicated by	
	body size) of produced parasitoids	49
7.	Numbers of <u>B. brevicornis</u> eggs laid on <u>O. nubilalis</u>	
	larvae at different rates of P (parasitoid females)	
	-H (host larvae) -T (parasitization time in days)	51