INTERACTION BETWEEN VESICULAR ARBUSCULAR MYCORRHIZAS AND RHIZOBIUM LEGUMINOSARUM

BY

CLAIR NAIM FARES

شبكة للملومات الجامعية أنم التسجيل ميكرو فيلميا التوثية للبكرو فرلم

A thesis submitted in Partial Fullfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

632 - 4

in

44813

Agricultural Sciences

(Agric. Microbiology)

Department of Agric. Microbiology

Faculty of Aggiculture

Ain Shams University

1992

Approval sheet

INTERACTION BETWEEN VESICULAR ARBUSCULAR MYCORRHIZAS AND RHIZOBIUM LEGUMINOSARUM

BY

CLAIR NAIM FARES

Date of Exmination /8/1992

INTERACTION BETWEEN VESICULAR ARBUSCULAR MYCORRHIZAS AND RHIZOBIUM LEGUMINOSARUM

 $\mathbf{B}\mathbf{y}$

CLAIR NAIM FARES

B.Sc. in Agric of microbiology, Ain Shams Univ., 1980 M.Sc. in Agric of Microbiology, Ain Shams Univ., 1986

Under the supervision of :

Prof. Dr. Y.Z. Ishac
Prof. of Agric. Microbiology, Fac. Agric.,
Ain Shams Univ.

- Prof. Dr. M.A.El-Borollosy

 Prof of Agric. Microbiology, Fac. Agic., Ain
 Shams Univ.
- Dr. M.E.El-Demerdash
 Ass.Prof.of Agric. Microbiology., Fac. Agric,
 Ain Shams Univ.

ABSTRACT

This study was carried out to evaluate the effect of inoculation with different imported and local strains of R. leguminosarum biovar viceae and/or VA mycorrhizas on growth, nodulation and chemical contents of two genotypes of faba bean and lentil grown on two types of soil and amended with two forms of phosphate.

The obtained results revealed that the imported strain R. leguminosarum USDA-102 F 84- faba bean genotype 402 and the local strain R. leguminosarum ARC-202L-lentil genotype 370 proved to be the most effective symbiotic systems when used in combination with VAM. These combination produced significant improvements in plant growth, nodulation. nitrogen and phosphorus contents and mycorrhizal root infection of both plants.

It was also observed that the clay-loam soil supported better growth, nodulation, chemical contents and mycorrhizal development compared with calcareous soil.

However, no significant differences were observed between the effects of super-or rockphosphate application with single or dual inoculation treatments in the two types of soil.

To evaluate the nodulation and mycorrhizal status of faba bean and lentil plants grown under conditions of bad drainge, a preliminarly survery was carried out in two governments at upper Egypt, i.e. El-Minia and Assuit. Representative samples were taken from a well drained soil to be

used as a control. Data showed that bad drainge adversly affected the number of nodules and number of mycorrhizal spores to greater extent than mycorrhizal infection. No correlation was generally observed between the number of mycorrhizal spores and mycorrhizal root infection.

The effect of soil moisture content, inoculation with the most effective R. Ieguminosarum strains and/or VAM and soil types on the growth, nodulation. N & P contents, mycorrhizal root infection and number of mycorrhizal spores was studied in a pot experiment. The recorded results showed that moisture content representing 60% of soil WHC gave the highest growth, nodulation, N & P contents and mycorrhizal root infection of faba bean and lentil plants. Increasing or decreasing soil moisture content above or under this level resulted in decreasing growth parameters and mycorrhizal infection of both hosts. The level of reduction in the measured parameters with increasing moisture content to 90% of WHC was more pronounced than that observed with 30% moisture content.

Contents

No		page
1.	INTRODUCTION	
2.	REVIEW OF LITERATURE	
	2.1. Rhizobia-legume association	2
	2.2. Factors affecting the response of leguminous	
	plants to rhizobia inoculation	7
	2.2.1. Rhizobial strain	
	2.2.2. The plant host	
	2.2.3. Soil conditions:	
	2.2.3.1. Type of soil	12
	2.2.3.2. Mineral nutrient content	
	a. Nitrogen	
	b. Phosphorus	
	c. Other nutrients	
	2.2.3.3. Moisture content	
	2.2.3.4. pH	
	2.2.3.5. Salinity	_
	2.3. Vesicular-arbuscular mycorrhizal association .	
	2.3.1. Effects of VAM on plant growth	29
	2.3.1.1. Nutritional effects	. 29
	2.3.1.2. Non-nutritinal effects	34
	2.4. The additive effects of VA mycorrhizas on	
	Rhizobium legume symbiosis	. 36
	2.4.1. Plant growth	
	2.4.2. Nutrients uptake	
	2.4.3. Nodulation and N2-fixation	
	2.4.4. Water relations	
3.	MATERIALS AND METHODS	
٥.	3.1. Materials	
	3.1.1. Host genotypes	
	3.1.2. Soil	
	3.1.3. Fertilizers	
	a. Nitrogen	
	b. Phosphate	
	3.1.4. Inoculants	-
	a. Rhizobia inoculants	_
	b. VA mycorrhizal inoculants	
	3.2. Methods	. 52
	3.2 1. Experimental techniques	50

No

Page

3.2.1.1.	Performance of Rhizobia-faba
	bean or lentil symbiosis as in-
	flunced by host genotype, soil
	type.P amendment and VA mycorrh-
	izal infection 52
3.2.1.2.	A survey study reporting nodula-
	tion and VA mycorrhizal status of
	faba bean and lentil plants grown
	under conditions of bad drainge
	in upper Egypt 55
3.2.1.3.	Interacting effects of soil type
	and soil moisture on growth,
	nodulation. chemical contents and
	VA mycorrhizal infection of faba
	bean and lentil plants 56
3 2 2 501 70	bean and length plants 55
	easurements 58
	neasurments 59
	Total plant dry weight 59
	Number of nodules 59
	Dry weight of nodules 59
	Chemical contents 59
	measurments 59
	Spore production 59
3.2.4.2.	Mycorrhizal infection 60
3.2.5. Statica	il analyses 60
4. RESULTS	
	Rhizobia-faba bean or lentil
	nflunced by host genotypes. soil
type. P amendm	ment and VA mycorrhizal infection.
4.1.1. Faba be	an 61
4.1.1.1.	Plant dry weight 61
4.1.1.2.	Nodulation 65
	Number of nodules per plant 65
	ry weight of nodules 67
	Nitrogen contents 67
	Phosphorus contents
	Mycorrhizal root infection 72
	Density of mycorrhizal spores 74

Page

1:

No

LIST OF TABLES

No		Page
1.	Physical and chemical properties of soil samples collected from the field of Faculty of Agricultur, Ain Shams Univ. (site 1) and El-Nubaria (site 2)	52
2.	Total dry weight (g plant-1) of 2 genotypes of faba bean inoculated with 4 strains of <i>R. leguminosarum</i> biovar <i>viceae</i> alone or combined with VA mycorrhizas and grown on 2 types of soil amended with 2 forms of phosphate	54
3.	Number of nodules (plant ⁻¹) of 2 genotypes of faba bean inoculated with 4 strains of <i>R. leguminosarum</i> biovar <i>viceae</i> alone or combined with VA mycorrhizas and grown on 2 types of soil amended with 2 forms of phosphate	66
4.	Dry weight of nodules (mg plant-1) of 2 genotypes of faba bean inoculated with 4 strains of <i>R. leguminosarum</i> biovar <i>viceae</i> alone or combined with VA mycorrhizas and grown on 2 types of soil amended with 2 forms of phosphate	68
5,	Nitrogen contents (mg plant-1) of 2 genotypes of faba bean inoculated with 4 strains of R. leguminosarum biovar viceae alone or combined with VA mycorrhizas and grown on 2 types of soil amended with 2 forms of phosphate	70
6.	Phosphorus content (mg plant-1) of 2 genotypes of faba bean inoculated with 4 strains of <i>R. leguminosarum</i> biovar <i>viceae</i> alone or combined with VA mycorrhizas and grown on 2 types of soil amended with 2 forms of phosphate	71
7.	Mycorrhizal root infection (%) of 2 genotypes of faba bean inoculated with VA mycorrhizas alone or combined with different strains of R. Ieguminosarum biovar viceae and grown on 2 types of soil amended with 2 forms of phosphate	73
	• • • • • • • • • • • • • • • • • • • •	ن ،

Mycorrhizal root infection (%) of 2 genotypes of lentil

inoculated with VA mycorrhizas alone or combined with different strains of *R. leguminosarum* biovar viceae and grown on 2 types of soil amended with 2 forms of phosphate

14.

Page

No

ARC-202 L, respectively and/or VA mycorrhizas

NU		ray
22.	Intracting effects of soil type and soil moisture on nitrogen contents (mg N plant-1) of faba bean (<i>Vicia faba</i> cv. G402) and lentil (<i>Lens esculenta</i> cv. G 370) inoculated with <i>R. leguminosarum</i> USDA-102 F 84 and ARC-202 L, respectively and/or VA mycorrhizas	105
23.	Intracting effects of soil type and soil moisture on phosphorus contents (mg P plant-1) of faba bean (<i>Vicia faba</i> cv. G402) and lentil (<i>Lens esculenta</i> cv. G 370) inoculated with <i>R. leguminosarum</i> USDA-102 F 84 and ARC-202 L, respectively and/or VA mycorrhizas	108
24.	Intracting effects of soil type and soil moisture on mycorrhizal infection (%)of faba bean (<i>Vicia faba</i> cv. G402) and lentil (<i>Lens esculenta</i> cv. G 370) inoculated with <i>R. leguminosarum</i> USDA-102 F 84 and ARC-202 L, respectively and VA mycorrhizas	111
25.	Intracting effects of soil type and soil moisture on number of mycorrhizal spores (kg soil) of faba bean (<i>Vicia faba</i> cv. G402) and lentil (<i>Lens esculenta</i> cv. G370) inoculated with <i>R. leguminosarum</i> USDA-102 F S4 and ARC-202 L, respectively and VA mycorrhizas	

LIST OF FIGURES

No		Page
1.	Adiagramatic representation of experimental design to evaluate to perfomanc Rhizobia - faba bean or	
2.	lentil symbiosis as influenced by 4 interacting factors A diagramatic representation of the experimental design to study the interacting effects of soil moisture and VA mycorrhizas on Rhizobia-faba bean or entil symbiosis	54
3.	in 2 types of soil	5 8
4.	L, respectively and/or VA mycorrhizas	98
5.	respectively and/or VA mycorrhizas	101
6.	L, respectively and/or VA mycorrhizas	104
7.	L, respectively and/or VA mycorrhizas	106
8.	Intracting effects of soil type and soil moisture on mycorrhizal infection (%) of faba bean (<i>Vicia faba</i> cv. G402) and lentil (<i>Lens esculenta</i> cv. G370) inoculated with <i>R.leguminosarum</i> USDA-102 F 84 and ARC-202 L,	109
9.	Intracting effects of soil type and soil moisture on number of mycorrhizal spores(kg soil-1) of faba bean (Vicia faba cv. G402) and lentil (Lens esculenta cv. G370) inoculated with R.leguminosarum USDA-102 F 84 and	112
	ARC-202 L, respectively and VA mycorrhizas	115

ACKNOWLEDGEMENT

I wish of express my sincere appreciation and gratitude to Prof. Dr. Y.Z.Ishac, Prof. of Agric. Microbiology, Prof. Dr. M.A. El. Borollosy, Prof. of Agric. Microbiology and Dr. M.E.El-Demerdash, Ass. Prof. of Agric Microbiology, Agric Microbiology Department, Faculty of Agriculture, Ain Shams University for suggesting the problems, helpfull guidance and keeping interest throughout the work, and thanks to Dr. M.I.Mostafa, Lecture of Agric. Microbiology, Agric Microbiology Department, Faculty of Agriculture. Ain Shams University, for performing the statistical analysis and his fruitful scintific discussion.

Special thanks are extended to Dr. J.S. Angle, Prof. of soil Microbiology, Department of Agronomy, Univ. of Maryland for providing rhizobia strains, articles relevant to the subject, and his fruitful Scientific discussion during his visit to Egypt in March 1992.

Thanks are also extended to all staff members and colleagues in Agric Microbiology. Dept., unit of Biofertilizers, Ain Shams Univ. and Microbiology Dept., Agric. Research center for supplying the facilities and materials that made this work possiple.