ENVIRONMENTAL PROBLEMS RELATED TO GROUNDWATER CONDITIONS IN SOME REGIONS WITHIN GREATER CAIRO

BY

MAHER ABDEL HALIEM EL-SHIWY

B.SC. (Civil Engineering, 1986)
Faculty of Engineering
Alexandria University

Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Master in Environmental Science

From

Department of Environmental Engineering Environmental Studies and Research Institute Ain Shams University

(1996)

ENVIRONMENTAL PROBLEMS RELATED TO GROUNDWATER CONDITIONS IN SOME REGIONS WITHIN GREATER CAIRO

MAHER ABDEL HALIEM EL-SHIWY

B.SC. (Civil Engineering, 1986) Faculty of Engineering Alexandria University

This Thesis Under The Supervision of:

Prof. Dr. Mohamed El Niazy Hamad


Professor of irrigation and hydraulic, Faculty of Engineering, Ain Shams University

Prof. Dr. Kamal Farid Saad

Professor of Hydrology, Environmental Studies and Research Institute, Ain Shams University

Prof. Dr. Fatma Abdel Rahman Attia

Director of the Research, Institute for Groundwater, The National Water Research Center

APROVAL SHEET

ENVIRONMENTAL PROBLEMS RELATED TO GROUNDWATER CONDITIONS IN SOME REGIONS WITHIN GREATER CAIRO

By Maher Abdel Haliem El-Shiwy

B.Sc. (Engineering, 1986)
Faculty of Engineering
Alexandria University

This Thesis for M.Sc. degree has been approved by:

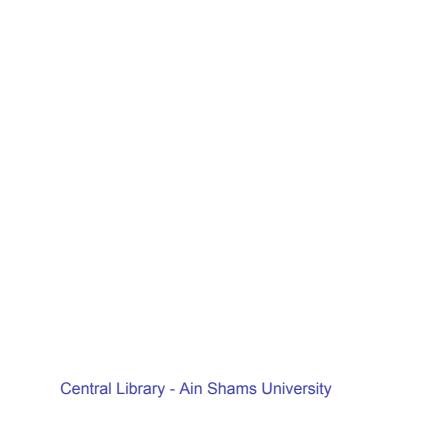
Prof. Dr. Mohamed El Niazy Hamad

Prof. Dr. Ibrahim Helal El-hatab

Prof. Dr. Ahmed Taher Abdel El-sadek

Date of examination 717 57/1996

Acknowledgement


First and foremost, I thank god the most beneficial and the most merciful for his help.

My appreciation and gratitude to Prof. Dr. Fatma Abdel Rahman Attia, director of the Research Institute for Groundwater, for her fruitful discussions and valuable comments. Without her support and encouragement this work would not have come to light.

To Prof. Dr. Mohamed El-Niazy, vice Dean of the Faculty of Engineering Ain Shams University, and Prof. Dr. Kamal Farid Saad, Professor of Hydrology Institute of Environmental Studies and Research Ain Shams University, the best appreciations and thanks for their efforts and support throughout the work.

Finally, the words cannot afford my appreciations and thanks to Engineer Safaa Mohamed Soliman. To him, my deep thanks and gratitude.

Also, I can not deny the effort of Mr. Tarik Azaam, who helped me in drawing all the maps of this thesis.

CONTENTS

ACKNOWLEDGEMENT CONTENTS	Page	
LIST OF TABLES LIST OF FIGURES ABSTRACT KEY WORDS		
CHAPTER I INTRODUCTION. 1.1 IMPORTANCE OF GROUNDWATER. 1.2 PROTECTION OF GROUNDWATER. 1.3 OBJECTIVE OF THE STUDY. 1.4 APPROACH.		1 2 4 4
CHAPTER II LITTERATEUR REVIEW. 2.1 GENERAL BACKGROUND. 2.1.1 GROUNDWATER QUALITY. 2.1.2 GROUNDWATER POLLUTION. 2.1.3 IDENTIFICATION OF POTENTIAL POLLUTANTS. 2.1.4 ATTENUATION OF POLLUTION. 2.2 PREVIOUS WORKS.		10 14 15
2.3 THE SIMULATION PACKAGES. CHAPTER III ENVIRONMENTAL PROBLEMS IN GREATER CAIRO. 3.1 PHYSICAL SETTING. 3.2 HYDROGEOLOGY. 3.3 GROUNDWATER USE.		22 22 24 29
3.4 HYDROCHEMISTRY		31 38 49
CONDITIONS AND POSSIBLE SOLUTIONS GROUNDWATER RISING		58 58 63 65
CHAPTER V CASE STUDY ON GROUNDWATER POLLUTION	ON	<i>c</i> 0

	iv
5.1 GENERAL CONDITIONS	69
5.2 HYDROLOGY OF THE PILOT AREA	71
5.3 GROUNDWATER QUALITY	74
5.4 SUITABILITY OF GROUNDWATER	
FOR VARIOUS USES	80
5.5 EL MANSOURIA AGRICULTURAL POLLUTION	87
5.6 EL MANSOURIA DOMESTIC POLLUTION	95
CHAPTER VI SUMMERY, CONCLUSIONS, RESULTS,	
AND RECOMMENDATIONS	
6.1 SUMMERY	98
6.1.1 GROUNDWATER POLLUTION	99
6.1.2 GROUNDWATER RISING	
6.2 CONCLUSIONS	
6.2.1 GROUNDWATER POLLUTION	102
6.2.2 GROUNDWATER RISING	
6.3 RESULTS	104
6.3.1 GROUNDWATER POLLUTION	104
6.3.2 GROUNDWATER RISING	
6.4 RECOMMENDATIONS	1.05
	107
REFRENCES	. 107
	100
APPENDIX(A)	, 100
	110
APPENDIX(B)	

LIST OF TABLES

		Pa	ıge
Table	2.1	The Major Potential Pollutants in Groundwater	12
Table	2.2	Major Sources and Causes of Groundwater	
		Pollution and Methods of Waste Disposal	13
Table	2.3	The Average Results for Nitrate and	2 🗀
		Fecal Coliform	17
Table	3.1	Hydraulic Parameters of The	29
m - 1- 1 -	2 2	Aquifer System	31
Table		Identification of samples	31
Table	3.3	Chemical Analyses of Deep	33
m-1-1-	2 2	Groundwater Samples Chamical Analysis of Shallow Croundwater	34
Table		Chemical Analyses of Shallow Groundwater	36
Table		Results of Piper Diagram Classification Type of Industries Existing	20
Table	3.5	in Groundwater	45
m-1-1 -	2 (Nitrate Concentration in Groundwater	46
Table			
Table	3.7		46
	2 2	in Groundwater (El Mansouria Area)	
Table		Bacteriological Pollution of Groundwater	4 /
Table	3.9	Bacteriological Analysis of Groundwater	47
		Samples in Greater Cairo	52
Table			52
Table	4.1	Difference Between Computed	C 3
		and Observed Heads	61
Table	4.2	Groundwater Heads Corresponding	<i>-</i> 1
		to Rver Stages (Section I-I)	64
Table	4.3	Predicted Effect of Reducing Seepage	
		on Groundwater Heads (Section I-I)	66
Table		Identification of El Mansouria Samples	75
Table		Analysis of Water Samples	77
Table	5.4	Groundwater Pollution from	0.0
		Natural Fertilizers	89
Table		Groundwater Pollution from Pesticides	93
Table	5.6	Analysis of Groundwater	0.7
		for Domestic Pollution	96

LIST OF FIGURES

		F	2age
Figure	2.1	Changes in Groundwater Quality	6
Figure	2.2	Agricultural Pollution	8
Figure	2.3	Domestic Pollution	8
Figure		Flow of Substance in Industries	9
Figure		Location Map of Greater Cairo Area	22
Figure		Land Use Map of Greater Cairo	25
Figure		Geomorphic Units in Greater Cairo	25
Figure		Geological Cross Section A-A'	26
Figure		Geological Cross Section B-B'	27
Figure		Geological Cross Section C-C'	27
Figure	3.7	Average Groundwater Piezometric	2.0
	2 2	Contour Map for Greater Cairo Area	30 32
Figure		Location of Sampling Sites	3∠ 35
Figure		Piper Diagram for Deep Groundwater	35
Figure		Piper Diagram for Shallow Groundwater	33
Figure	3.11	Schematic Map for Hydrochemical	37
TI	2 12	Types of Deep Groundwatr	37
Figure	3.12	Schematic Map for Hydrochemical Types of Shallow Groundwater	37
Piguro	2 12	Chloride	39
		Calcium	39
		Sodium	40
		Magnesium	40
		Sulphate	41
		Bicarbonate	41
		Total Dissolved Solids	42
Figure	3.20	Isopach Map for the Clay Layer	43
		Depth to Groundwater Map	43
		Rate of Recharge to the Aquifer	44
		Groundwater vulnerability Map	44
Figure	3.24	Drinking System in Greater Cairo	48
		Sewage System in Greater Cairo	48
		Industrial Pollution Load	50
Figure	3.27	Agricultural Pollution Load	50
		Domestic Pollution Load	51.
Figure	3.29	Pollution Risk Map	51
Figure	3.30	Observed Piezometric Heads (1975)	54
		Observed Piezometric Heads (1985)	54
		Observed Piezometric Heads (1994)	55
		Difference in Heads (1975-1985)	55
		Difference Heads (1985-1994)	56
Figure	3 35	Hydrograph of Groundwater Heads	

m .d	2 26	Along Cross Section (I-I)	56
rigure	3.36	Area Most Suffering from	
TI 4	4 7	Groundwater Rising	57
Figure		The Model Boundaries	59
Figure		The Grid of The Regional Area	59
Figure		Computed Groundwater Head (1994)	60
Figure		Grid of the Eastern Area	62
Figure	4.5	Computed Groundwater Head for	
T		The Eastern Area (1994)	62
Figure	4.6	Daily Water Balance (1994) for (a) the	
		region and (b) the eastern area	63
Figure		Unsteady Change in Groundwater Heads	64
Figure	4.8	Predicted Groundwater Heads in Greater	
_ •		Cairo Under Controlled Seepage	66
Figure	4.9	Predicted Groundwater Heads in	
		Old Cairo Under Controlled Seepage	67
Figure	4.10		
		Section I-I Under Controlled Seepage	67
Figure	4.11		
		for (a) the region and (b) the old	
		part of Greater Cairo	68
Figure		Location of the Pilot Area	70
Figure	5.2	Geological Cross Section	
		(Oseem-El Mansouria)	72
Figure	5.3	Aquifer Base in El Mansouria Area	72
Figure		Clay Thickness in El Mansouria Area	73
Figure	5.5	Piezometric Head in El Mansouria	73
Figure	5.6	Location of Water Samples in the	
		Pilot Area	75
Figure	5.7	Piper Diagram for Deep Groundwater Sampl	es
		in El Mansouria Area	79
Figure	5.8	Piper Diagram for Shallow Groundwater	
		Samples in El Mansouria Area	79
Figure		Sodium	81
Figure		Calcium	81
Figure		Magnesium	82
Figure	5.12	Sulphate	82
Figure		Bicarbonate	83
Figure	5.14	Chloride	8.3
Figure		Iron	84
Figure	5.16	Manganese	84
Figure	5.17	Ammonia	85
		Phosphate	85
		Nitrate	86
		Total Dissolved Solids	86
Figure	5.21	Model Area	88
		Prediction of Total Nitrogen	
		ion With Depth (Horizontal Direction)	90

Figure	5.23	Prediction of Total Nitrogen With Depth	190
Figure	5.24	Comparison Between Original Nitrogen	
		Concentratio and Reduced Rates	91
Figure	5.25	Locations of Pesticides Samples	92
Figure	5.26	Prediction Change in Malathion	
_		Concentration with Depth	92
Figure	5.27	Predicted Change in DDT Concentration	
_		With Depth	94
Figure	5.28	Relation Between Existence of Pollutan	ts
_		and Sample Depth	97
Figure	5 29	Relation Between COD and D	97