PREVALENCE OF FILARIAL INFECTION AND ITS RELATION TO ENVIRONMENTAL CONDITION IN RURAL AREAS

Thesis

Submitted for Fulfilment of Master Degree in Environmental Medical Science

B y

Hassan Abd El Ghafar Abd El-Hamid El-Amair

M.B. B.ch

Laberdisors

Prof. Dr. Rifky Faris Hanna Alla

Dept. of Community, Environmential and Occupational Medicine

Faculty of Medicine

Ain Shams Univ.

Prof. Dr. Mohsen Abd-El Hamed Gad Alla

Dept. of Community, Environmential and Occupational Medicine
Faculty of Medicine
Ain Shams Univ.

Prof. Dr. Adel Mohamed Mahmoud Gad

Dept. of Entomology
Faculty of Science
Ain Shams Univ.

Institute of Environmental Studies and Research

Ain Shams University 1993

PREVALENCE OF FILARIAL INFECTION AND ITS RELATION TO ENVIRONMENTAL CONDITION IN RURAL AREAS

Thesis

Submitted for Fulfilment of Master Degree in Environmental Medical Science

By

Hassan Abd El Ghafar Abd El-Hamid El-Amairy

M.B. B.ch

Zupervisors

Prof. Dr. Rifky Faris Hanna Alla

Dept. of Community, Environmential and Occupational Medicine
Faculty of Medicine
Ain Shams Univ.

Prof. Dr. Mohsen Abd-El Hamed Gad Alla

Dept. of Community, Environmential and Occupational Medicine

Faculty of Medicine

Ain Shams Univ.

Prof. Dr. Adel Mohamed Mahmoud Gad

Dept. of Entomology
Faculty of Science
Ain Shams Univ.

Institute of Environmental Studies and Research

Ain Shams University 1993

APPROVAL SHEET

Name Hassan Abd-El Ghfar Abd-El Hamid El. Amairy.

Title: PREVALENCE OF FILARIAL INFECTION AND ITS RELATION TO ENVIRONMENTAL CONDITION IN

RURAL AREAS

This thesis for the M.Sc. Degree In Environmental

Medical Sciences

Has Been Approved By:

Prof. Dr. Ali Abd-El Hady Masoud

Head of Medical Science, Department Institute of

environmental studies and reasearch

Ain Shams University.

Prof. Dr. Rifky Faris Hanna Alla

Department of Community, Environmental and

A. Showlay

Occupational Medicine Faculty of Medicine

Ain Shams University.

Prof. Dr. Ahmad Shokry Abd-El Aziz

Dean of Faculty of Agriculture,

Suez Canal University.

ACKNOWLEDGEMENT

The author is very grateful to Prof. Dr. Rifky Faris, Department of Community, Environmental and Occupational Medicine, Faculty of Medicin, Ain Shams University and Prof. Dr. Adel Gad, Entomology Department, Faculty of Science, Ain Shams University for suggesting the work, general guidance and for reading and correcting the manuscript.

My thanks are expressed to Prof. Dr. Mohsen Gad Allah, Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University for his encouragement throughout the period of work.

Deep thanks are also due to Dr. Reda Ramzy, Ain Shams Research and Training Centre on Vector Borne Disease, Ain Shams University for supervising the part of work carried out to test blood samples for detection of filarial circulating antigen.

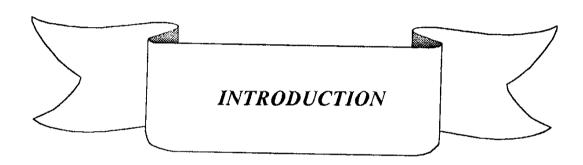
To Prof. Dr. Ali Masoud, head of Medical Science Department, Institue of Environmental Studies and Research, Ain Shams University, the author is indebted with thanks for his encouragement throughout the period of the work.

Many thanks are also due to Dr. Samy Mosleh, head of Health Management Department at Zifta district, Gharbiya governorate and his staff members for their various help and assistance throughout the field studies.

CONTENTS

	PAGE
I.	INTRODUCTION1
II.	REVIEW OF LITERATURE3
	1. HISTORICAL REVIEW OF FILARIASIS3
	2. EPIDEMIOLOGIC FEATURES OF FILARIASIS IN EGYPT4
	3. GEOGRAPHICAL DISTRIBUTION OF FILARIASIS
	IN EGYPT7
	4. RECENT CHANGES IN THE STATE OF
	BANCROFTIAN FILARIASIS IN EGYPT9
	5. VECTORS OF BANCROFTIAN FILARIASIS.
	IN EGYPT11
	6. REQUIREMENT OF TRANSMISSION12
	7. SEASONAL ABUNDANCE
	8. CLINICAL MANIFESTATION OF
	LYMPHATIC FILARJASIS14
	a- Exposure versus infection
	6- ASYMPTOMATIC STAGE15
	c- Acute stage15
	4 - PHRONIC STAGE

9.). DIAGNOSIS OF LYMPHATIC FILARJASIS	16
	a- 1MMUNO DLAGNOSIS	17
	6- ANTIGEN DETECTION TEST	18
	c- FINGER PRICK TECHNIQUE	19
10	O. COMMUNITY CONTROL OF FILARIASIS	20
III.	MATERIAL AND METHODS	24
ĭ	1. STUDY AREAS	24
2	2. STUDY DESIGN AND SAMPLE SIZE	24
Ĵ	3. CLINICAL EXAMINATION	26
4	4. PARASITOLOGICAL EXAMINATION	26
<i>.</i>	5. SEROLOGICAL EXAMINATION	27
é	6. ENTOMOLOGICAL STUDIES	29
IV.	RESULTS	31
	1. HUMAN STUDIES	
2	2. ENVIRONMENTAL STUDIES	33
	3. ENTOMOLOGICAL STUDIES	
v.	•	
VI.		
	LITERATURE CITED	
AKA	BIC SUMMARY	


LIST OF TABLES

of bed nets in the two village	s37
13. Frequency distribution of house	es according to
presence of animals inside the	house in the two villages37
14. Frequency distribution of house	es according to
number of bedrooms/house in	the two villages38
15. Frequency distribution of house	es according to source of
water supply in the two villag	ges38
16. Frequency distribution of house	es according to use
of insecticides in two villages	39
17. Frequency distribution of house	es according to location
facing a vacant area in the two	o villages39
18. Frequency distribution of house	es according to location
of animal sheds within the house	se in the two villages40
19. Crowding index in examined h	ouses of MH & KD40
20. Prevalence of infected houses a	
building material in MH	41
21. Prevalence of infected houses a	ccording to type of ceiling in MH42
22. Prevalence of infected houses a	according to type of floor in MH42
23. Prevalence of infected houses a	ccording to type of
windows in MH	43
24. Prevalence of infected houses a	according to number
of bedrooms in MH	43
25. Prevalence of infected houses a	according to type of
Latrings in MH	44

26. Prevalence of infected houses according to presence of
TV. sets in MH44
27. Prevalence of infected houses according to use of bednets in MH4.
28. Prevalence of infected houses according to location
facing a vacent lots in MH45
29. Prevalence of infected houses according to
number of persons/bderoom in MH46
30. Prevalence of infected houses according to source of
water supply in MH46
31. Prevalence of infected houses according to use of
insecticides in MH47
32. Prevalence of infected houses according to presence
of animal inside the house in MH47
33. Prevalence of infected houses according to location
of animal sheds in MH48
34. Crowding index in examined houses of MH
according to infection

OBJECTIVE OF THE STUDY

- 1- To determine the epidemiologic feature of Wuchereria bancrofti infection in two villages, one of them endemic and the other village devoid of infection in the same area.
- 2- To assess the parasitological, serological and clinical feature of bancroftian filariasis in the two villages.
- 3- To conduct an entomological survey of mosquitoes tranmitting the disease.
- 4- To conduct an environmental conditions that may affect transmission of the disease and its focal distribution.
- 5- To utelize these environmental important data in recommendations of suggested programme of control of filariasis in this focal endemic villages.

INTRODUCTION

Lymphatic filariasis is a mosquito borne parasitic disease caused by the intravascular nematode Wuchereria (W.) bancrofti, Brugia (B.)malayi and B. timori. The adult worms inhabit host lymphatic vessels, releasing larval microfilariae which live in the blood stream. The adult parasite can live for many years, probably up to 10 years but a 40 years life span has been reported. The life span of microfilariae is about a year at the most. Lymphatic filariasis in its various forms remain a public health problem in many tropical countries. It is a disease affecting people in rural areas as well as an increasing number of those living in urban areas with poor sanitation. Worldwide, there are about 905 millions at risk of aquiring the parasite with filarial worm and about 90 millions are currently infected, more than 81 millions with bancroftian and approximately 8 millions with brugian filariasis (Partono 1988).. Approximately 65% of those infected live in China, India and Indonesia.

In Egypt human filariasis caused by nocturnally periodic W., bancrofti has been known sine pharaonic times "Laurence., 1967". however, before the discovery of its life cycle all evidence of its occurrence is anecdotal and based on sporadic observations of the clinical manifestations i.e elephantiasis of limbs and genitals (Khalil 1939). While clinical, pathological and parasitological research of filariasis was carried out in Egypt during the earlier part of this century, significant epidemiological studies did not start before 1930 (Khalil et al, 1932 and Baz., 1946). These investigations led to the identification of Culex pipiens as the main vector of the parasite. They also revealed that the distribution

Introduction

of filariasis in Egypt was highly focal (Khalil, 1936 and Khalil., 1939). Subsequent surveys for filariasis combining measurements of the microfilaria rate and of the frequency of clinical manifestation were conducted in many communities of Egypt. The results of these studies provided a sketchy panorama of the distribution of filariasis in Egypt (Shawarby et al, 1965, and Southgate., 1979). Moreover these findings indicated that villages with high prevalence are interspread with others, with no apparent differences in ecology where the disease is virtually absent. This striking focal distribution of filariasis has remained an unsolved puzzle, although one can speculate on numerous factors which may influence this phenomenon. However, to our knowledges, confirmation of these focality associated factors and further investigations to identify risk factors responsible for aquiring filarial infection have not been conducted.

Accordingly, the present study was carried out in a filarious endemic village and in another village devoid of infection in an attempt to identify risk factors responsible for the focal distribution of filarial infection.

Introduction