EFFECT OF UREA REBOUND ON ASSESSMENT OF DIALYSIS ADEQUACY

THESIS

SUBMITTED FOR PARTIAL FULFILMENT FOR THE MASTER DEGREE IN INTERNAL MEDICINE

By

Ashraf Tawadrose Metryose

SUPERVISORS

Prof. Dr. Wahee \ Mohamed El-Saeed

Prof. of Int and Medicine Ain Shams University

Dr. Mohamed Ali Mohamed Ibrahim

Assisstant Prof. of Internal Medicine
Ain Shams University

Dr. Essam Nor El-Din

Lecturer of Internal Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 1995

ACKNOWLEDGMENT

I would like to express my utmost thanks and highest appreciation to Prof. Dr. Wahid Mohamed El-Saeed, Prof. of Internal Medicine, Faculty of Medicine, Ain Shams University. His valuable help, precious advice and continuous encouragement were the driving force for the completion of this work. It is a great honour to work under his guidance and supervision.

I'm greatly indebted to Dr. Mohamed Ali Mohamed Ibrahim, Assistant Prof. of Internal Medicine, Faculty of Medicine, Ain Shams University. His valuable guidance and sincerity support any appreciation.

My deep respects and thanks to Dr. Essam Nor El-Din, Lecturer of Internal Medicine, Faculty of Medicine, Ain Shams University. I want to express my obligation and gratitude for his guidance and sincere help in this work.

LIST OF ABBREVIATIONS

A kt/v: Approximate kt/v BUN: Blood urea nitrogen

Dx: Dialysis

EDTA: European Dialysis and Transplant Association

Epo: Recombinant human erythropoietin

ESRD: End stage renal disease

G: Generation rate ICV: Intracellular volume

KoA: Dialyzer blood urea water clearance in vitro

kt/v: k: urea clearance of dialyzer t: times of dialysis session

v:total distribution volume of urea

Kw: Dialyzer clearance in vivo

L kt/v: Logarithmic kt/v

NCDS: National Co-operative Dialysis Study

PCR: Protein catabolic rate

PCRn: Protein catabolic rate, normalized to lean body weight

PDUR: Post-dialysis urea rebound

PGE₂: Prostaglandin E₂
PRU: Percent urea reduction

R1: Post blood urea at 15 minutes after Dx/pre-blood urea R2: Post blood urea at 30 minutes after Dx/pre-blood urea R3: Post blood urea at 60 minutes after Dx/pre-blood urea Ro: Post blood urea at 3 minutes after Dx/pre-blood urea

RPM: Revolutions per minute

TAC urea: Time Average of urea Clearance TAC: Time averaged BUN clearance

TBW: Total body water
UKM: Urea kinetics model
URR: Urea reduction ratio
X: Distribution coefficient

LIST OF FIGURES

Figure (1): The relationship of TAC urea, PCRn	8
and probability of morbidity derived	
from the NCDS	
(A) patients dialyzed for 4.5 hours	
(B) patients dialyzed for 3.2 hours	
Figure (2): BUN values decreases nonlinearly	
during dialysis	24
Figure (3): PCR and kt/v	28
Figure (4): TAC urea	30
Figure (5): The relationship between the interdialysis	
urea reduction ratio (URR) and kt/v when	
fluid losses during dialysis are approximately	
10% of body weight. This relation shifts	
upward when no fluid losses occurs	33
Figure (6): Predicted normalized protein	
catabolic rate (PCRn) based on kt and	
first-of-the week pre-dialysis plasma UN	
in patients dialyzed 2 times weekly	37
Figure (7): Predicted normalized protein catabolic rate	
(PCRn) based on Kt and the mid-week	
pre-dialysis plasma UN in patients dialyzed	
3 times weekly	38
Figure (8): Kinetics of urea during hemodiafiltration	
in the following interval by one and two	
pool model	62
Figure (9): Kinetics of creatinine during hemodiafiltration	
in the following interval by one	
and two pool model	63
Figure (10): Mean interstitial and plasma urea	
concentration during hemodialysis	
and during 4 hours after	66
Figure (11): Predicted in vivo urea blood water	
clearance (kw) based on the in vitro koA	78
Figure (12): Estimated urea distribution volume V	
in male dialysis patients	79

Figure (13): Estimated V in female dialysis patients	80
Figure (14): Relationship between R (post/pre blood	
urea ratio) and kt/v as modulated by uF/w	
(uF: ultrafiltrate volume "liters", w:	
post dialysis weight "Kg")	81
Figure (15): Mean approximately kt/v level,	
post-dialysis period	88
Figure (16): Mean logarithmic kt/v level,	
post-dialysis period	90
Figure (17): Mean urea reduction ratio,	
post-dialysis period	92
Figure (18): Comparison between the two methods	
for estimation of kt/v post-dialysis	97

LIST OF TABLES

Table	(1): Table of data and results of the study	83
Table	(2): Comparison between kt/v (A) values at	
	different times	87
Table	(3): Comparison between L kt/v values at	
	different times	89
Table	(4): Comparison between R values at different times	91
Table	(5): Comparison between Ao kt/v and Lo kt/v	93
Table	(6): Comparison between A1 kt/v and L1 kt/v	94
Table	(7): Comparison between A2 kt/v and L2 kt/v	95
Table	(8): Comparison between A3 kt/v and L3 kt/v	96
Table	(9): Correlation study between percent change	
	of blood urea at 15 min. post dialysis with	00
	different variables	98
Table	(10): Correlation study between percent change	
	of blood urea at 30 min. post dialysis with	00
	different variables	99
Table	(11): Correlation study between percent change	
	of blood urea at 60 min. post dialysis	
	with different variables	100

ABSTRACT

The low urea concentration immediately post-dialysis leads to an overestimation of kt/v based on single pool urea kinetic models. The aim of this study is to assess the effect of urea rebound on calculation of kt/v and study the effect of different factors on it. 20 patients on regular hemodialysis were subjected for calculation of kt/v by pre-dialysis blood urea sample and serial samples of blood urea at 3, 15, 30, 60 minutes post dialysis.

Results of this work showed that there were a reduction in kl/v values approached 16% after 30 minute post dialysis and its maximum at 60 minutes post dialysis. These results were demonstrated in calculated kt/v by the logarithmic method kt/v = - Ln(R-0.03)+[(4-3.5R)x(uF/w)] (ANOVA = 2.1860, p<0.05). Also, the same results was demonstrated in calculated kt/v through the relationship between R (post/pre urea ratio) and uF/wt (ANOVA = 2.15) (p<0.05). There were no significant difference in values of kt/v obtained by the two methods at 3, 15, 30, 60 minutes post dialysis (p>0.05). The urea rebound is not correlated with different factors such as age, sex, weight, height, volume, hours per session, frequency of sessions and ultrafiltration.

CONTENTS

INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	
I. Factors affecting adequacy of dialysis	
National co-operative dialysis study	6
Dialysis prescription	7
Causes of high V and reduced dialysis	
clearance	10
Recirculation in the vascular access	14
Access recirculation measuring techniques	15
Modeling errors	15
Solute disequilibrium	17
The influence of the dialysis membrane	18
II. Methods of assessment of dialysis adequacy	
Urea as surrogate solute	21
Kt/V: The intradialysis interval	22
Protein catabolic rate:	
Protein Catabolic rate.	26
The interdialysis interval	29
Time averaged BUN	31
Mid-week pre-dialysis BUN	32
Urea reduction ratio	
A critical comparison of specific indices of dialysis—adequacy	34
indices of dialysis adequacy	39
Other studies to define adequacy	39
Neurological studies of underdialysis	rv
Differences between prescription and delive	40
of dialysis dose	41
Adequate and optimal dialysis	
Patient monitoring to achieve the	43
goal of dialysis	49
Recombinant human erythropoietin	50
The dialysis team	
III. Urea rebound and its effect	
on adequacy of dialysis	
Accumptions of the urea kinetics model	53
1. Single pool of urea distribution	50
2. Instantaneous mixing of the	55
single-pool	50

Constant net rate of generation	
of urea	55
4. First order clearance of urea	
from the body	56
Constant rate of inter-dialysis	
weight gain	56
Non-significant protein binding	
by urea	57
Conceptual problems in the calculation	
of urea kinetics	58
The two pool urea kinetic model	59
Multiple pool models	60
Compartment volumes (V)	64
Mass transfer coefficients (T)	64
Distribution coefficients (X)	67
Methods of assessment of urea rebound	67
PATIENTS AND METHODS	76
RESULTS	83
DISCUSSION	101
SUMMARY AND CONCLUSION	
REFERENCES	112
ARARIC SHAMAADV	