THE TOXIC ACTION OF CERTAIN BOTANICAL EXTRACTS TO MAIN VEGETABLE SUCKING PESTS IN EGYPT

By

EHAB MOSTAFA BAKR

B.Sc., Agricultural Sciences, Cairo University, 1986

A thesis submitted in partial fulfilment

Of

the requirements for the degree of

632,95042 E.M

MASTER OF SCIENCE

In

Agriculture

(Pesticides)

52416

Department of Plant Protection

Faculty of Agriculture

Ain Shams University

1996

APPROVAL SHEET

THE TOXIC ACTION OF CERTAIN BOTANICAL EXTRACTS TO MAIN VEGETABLE SUCKING PESTS

IN EGYPT

 $\mathbf{B}\mathbf{y}$

EHAB MOSTAFA BAKR

B.Sc., Cairo University, 1986

This thesis for M.Sc. degree has been approved by

Prof. Dr. A.I. Gadallah

Prof. of Economic Entomology and Head of Plant Protection

Department, Faculty of Agriculture, Al-Azhar University.

Prof. Dr. Z.H. Zidan

Prof. of Pesticides Chemistry and Vice Dean for Graduate Studies and Research, Ain Shams University.

2.H

Prof. Dr. Amged K. Sobeiha A. K. Sobeiha

Prof. of Pesticides and Pest Control, Faculty of Agriculture, Ain Shams University.

Date of examination: $\frac{7}{4}$ /1996.

ACKNOWLEDGEMENT

I am deeply grateful to **Prof. Dr. Amged K. Sobeiha**, Professor of Pesticides Chemistry, Faculty of Agriculture, Ain Shams University, for his supervision and valuable guidance in all steps of this work.

I am actually indebted to **Prof. Dr. A.M.I. Farrag**, Professor of Acarology, and Director of Central Agricultural Pesticides Laboratory, Agricultural Research Center, Ministry of Agriculture, for his supervision, great help and valuable advices during this investigation.

Thanks are also extended to **Dr. S.A. Dahrog,** Associate Professor of Pesticides, Faculty of Agriculture, Ain Shams University, for his supervision and kind sincerely helps.

Thanks are also extended to all staff-members of the Vegetable Acarology Department, Plant Protection Research Institute, Agric. Res. Center, and my family for great help and encouragement.

Ehab Mostafa Bakr. THE TOXIC ACTION OF CERTAIN BOTANICAL EXTRACTS TO VEGETABLE SUCKING PESTS IN EGYPT. Unpublished Master of Science, University of Ain Shams, Faculty of Agriculture, Department of Plant Protection, 1996

Abstract

The present study was mainly devoted to elucidate the biological activity of certain botanical substances against red spider mite *Tetranychus urticae* and black bean aphid *Aphis fabae*. The solvent extracts of Bitter apple seeds *Citrullus colocythis* and Jew's mallow seeds *Corchorus obitorius*, Banana leaves juice *Musa paradisica* and American aloe leaves juice *Agava americana* and ready made mixture of camphor and olive oil (1:9) were undertaken in this study.

Hexane and acetone were the best solvent to extract or eluite chemical compounds have acaricidal and aphicidal action from Bitter apple and Jew's mallow seeds, respectively.

According to toxicity against red spider mite, the investigated botanical materials could be arranged as follows; Bitter apple seed hexane extract, Jew's mallow seed acetone extract, camphor/olive (1 : 9) mixture and crude American aloe juice. Against aphid, the botanical materials order were camphor/olive oil (1 : 9) mixture, Bitter apple seed hexane extract and Jew's mallow seeds acetone extract.

Bitter apple seed hexane extract proved to be the best repellent material to red spider mite followed by camphor/olive oil (1 : 9) mixture and Jew's mallow seeds acetone extract, while the tested extracts gave poor repellency effect to black bean aphid and this order was Jew's mallow seed acetone extract, camphor/olive (1 : 9) mixture and Bitter apple seeds hexane extract.

Ultra violet (2542°A) had no/or slight influence on Bitter apple seed extract and camphor/olive mixture and Jew's mallow seeds extract.

Camphor/olive oil mixture was more effective than Bitter apple seed extract against both of red spider mite and black bean aphid under open and protective semifield condition. Both of the previous tested materials were more effective against both of pests under protective than open semifield condition.

Camphor/olive mixture proved to be more effective in reducing the population of mites and aphid on pepper plants at plastic house cultivation.

Key Words: Botanical materials, Botanical extracts, Tetranychus urticae,
Aphis fabae, Citrullus colocythis, Corchorus obitorius, Musa
paradisica, Agava americana, Camphor, Toxicity, Repellent,
Ultra-violet.

CONTENTS

		Page
I-	INTRODUCTION	1
П-	REVIEW OF LITERATURE	3
	A- Toxicity of Certain Botanical Extracts	3
	B- Repellency Effects of Certain Botanical Extracts	9
	C- Effect of Ultra-Violet Radiation on Stability and Biologi-	
	cal Activity of Botanical Extracts	10
Ш-	MATERIALS AND METHODS	13
	A- Target Pests	13
	1- Spider mite Tetranychus urticae Koch	13
	2- Black bean aphid Aphis fabae Scop.	13
	B- Botanical Materials Used	14
	1- Extracted plants	14
	2- Squeezed plants	14
	3- Ready-made botanical product	14
	C- Extraction Procedures	15
	1- Plant extracted techniques	15
	2- Preparing of leaves juice	15
	D-Procedures Used For the Evaluation of Biological	
	Efficacy of Botanical Materials	15
	1- Screening of insecticidal and acaricidal activity of cer-	
	tain botanical solvent extracts	15
	a- Acaricidal activity evaluation	15
	b- Aphicidal activity evaluation	16
	2- Comparative toxicity of aqueous solutions of certain	
	botanical materials to the red spider mite and black	
	bean aphid	16
	a- Treatment of mites	17
	b- Treatment of aphids	17
	3- Determination of repellency effect of botanical com-	
	pounds	17
	a- Repellency effect against mites	18
	b- Repellency effect against aphid	18
	F- Illtra-Violet Resistance of Certain Rotanical Compounds	10

CONTENTS: Cont'd.

		Page
	F- Efficiency of Certain Botanical Compounds Against the	
	Red Spider Mite and Black Bean Aphid Under Semi-	
	field and Plastic House Conditions	19
	I - Semi-field evaluation	19
	a- Evaluation of acaricidal activity	19
	b- Evaluation of aphicidal activity	20
	2- Greenhouse evaluation	20
IV-	RESULTS AND DISCUSSION	22
	A- Screening of Insecticidal and Acaricidal Activities of	
	Certain Botanical Solvent Extracts	22
	1- Toxicity of seed extracts to the red spider mite	22
	2- Toxicity of seed extracts to black bean aphid	25
	B- Comparative Toxicity of Certain Botanical Compounds	29
	to Red Spider mite Tetranychus urticae and Black	
	Bean Aphid Aphis fabae	
	1- Comparative toxicity to the red spider mite	29
	2- Comparative toxicity to black bean aphid	32
	C- Repellency Effect of Certain Botanical Compounds to the	
	Red Spider Mite and Black Bean Aphid	36
	1- Repellency effect to the red spider mite	36
	2- Repellency effect to black bean aphid	39
	D- Ultra-violet Resistance of Certain Botanical Extracts	39
	E- Initial and Residual Activity of Certain Botanical Materials	
	to the Red Spider Mite and Black Bean Aphid Under	
	Protective and Open Semi-field Conditions	45
	I - Biological activity to mites	45
	2- Biological activity to aphid	47
	F- Efficiency of Certain Botanical Materials Against the Red	
	Spider Mite and Potato Aphid on Pepper Plants at	
	Plastic House	58
V-	SUMMARY	64
VI-	REFERENCES	67
VII-	ARARIC SIIMMARV	

LIST OF TABLES

Table		Page
(1)	Main criterion of the toxicity lines representing the biological	
	activity of certain plant extracts against red spider mite	
	Tetranychus urticae	23
(2)	Main criterion of the toxicity lines representing the biological	
	activity of certain plant extracts against black bean aphid	
	Aphis fabae	26
(3)	Main criterion of the toxicity lines representing toxicity lines	
	of certain botanical compounds against red spider mite	
	Tetranychus urticae	30
(4)	Main criterion of the toxicity lines representing toxicity lines	
	of certain botanical compounds against black bean aphid	
	Aphis fabae	33
(5)	Repellency effect of certain botanical extract against the red	
	spider mite	37
(6)	Repellency effect of certain botanical extract against black	
	bean aphid	38
(7)	Effect of ultra-violet light on the efficiency of certain	
	botanical extracts against the red spider mite	40
(8A)	Efficiency of Bitter apple seed hexane extract against the red	
	spider mite under open and protective semi-field conditions	48
(8 B)	Efficiency of camphor/olive oil (1 :9) mixture against the	
	red spider mite under open and protective semi-field	
	conditions	49
(9 A)	Efficiency of Bitter apple seed hexane extract against black	
	bean aphid under open and protective semi-field conditions	54
(9 B)	Efficiency of camphor/olive oil (1:9) mixture against black	
	bean aphid under open and protective semi-field conditions	55
(10A)	Efficiency of Bitter apple seed hexane extract against the red	
	spider mite and potato aphid on pepper plants at plastic	
	house	60
(10B)	Efficiency of camphor/olive oil (1:9) mixture against the	
	red spider mite and potato aphid on pepper plants at plastic	
	house	61

LIST OF FIGURES

Fig.		Page
(1)	Toxicity regression lines representing the biological activity of certain plant extracts to red spider mite, <i>Tetranychus</i>	
	urticae	24
(2)	Toxicity regression lines representing the biological activity	
	of certain plant extracts to black bean aphid, Aphis fabae	27
(3)	Toxicity regression lines representing toxicity of certain bota-	
	nical compounds to red spider mite, Tetranychus urticae	31
(4)	Toxicity regression lines representing toxicity of certain	
	botanical compounds to black bean aphid, Aphis fabae	34
(5)	Effect pf exposure to U.V. on the toxicity of certain botani-	
	cal materials after different periods (min.).	41
(6A)	Effect of Bitter apple seed-hexane extract against the red	
(CD)	spider mite under open and protective semifield conditions	50
(6B)	Effect of camphor/olive oil (1 :9) mixture against the red	
(7.4.)	spider mite under open and protective semifield conditions	51
(7 A)	Effect of Bitter apple seed hexane extract against black bean	
(TD)	aphid under open and protective semi-field conditions	56
(7B)	Effict of camphor/olive oil (1:9) mixture against black bean	
/9 A \	aphid under open and protective semi-field conditions	57
(8A)	Effect of certain botanical material against the red spider	
(OD)	mites on pepper plants at plastic house	62
(8B)	Effect of certain botanical material against potato aphid on	
	pepper plants at plastic house	63

I- INTRODUCTION

In Egypt, vegetable crops are highly infested by sucking pests as aphid, whitefly and mites. Synthetic pesticides are still the main method currently used for controlling these pests. There is no doubt that widespread indiscriminate pesticide application have sometimes caused contamination of the environment and some disastrous ecological damage. Heavy use of conventional pesticides enhances the potential for the development of pesticides resistance and is detrimental to the judicious management of beneficial arthropods. Also, residues of pesticides in vegetable crops could cause a health hazard to ultimate consumers. Thus, Hileman (1990) reported that awareness has contributed to rise the alternative agriculture, a farming system that aims for adequate productivity while ensuring food safety and protection of the environment. One approach to the control of pests in alternative agriculture is the use of biodegradable natural plant compounds in place of synthetic insecticides. It was observed that plants produced chemical compounds that may have biological activity against certain pests. The multiple biological activity of various botanical extracts as repellent, toxic, antifeedant and reproduction inhibitors against insects, mites and nematodes have been reported by several investigators, such as Warthen (1979) for Neem-seed extract against larvae of cabbage looper and beet armyworm, Osman et al. (1986) for Nerium oleander and Caesalpinia sepiaria against predatory mite Amblyseius gossipi, El-Halawany et al. (1989) for Lantana camara against Tetranychus arabicus, and Chauvin et al. (1994) for camphor against Tineota bisselliella.

In a search for finding and isolating new botanical compounds could be used as pesticides, the present work was undertaken to survey concerning plants and botanical materials which have biological activities against black bean aphid *Aphis fabae* and red spider mite *Tetranychus urticae*, the following points of research were elucidated:

- a) Screening the insecticidal and acaricidal activities of certain botanical solvent extracts.
- b) Comparable toxicity of certain botanical materials against red spider mite *T. urticae* and black bean aphid *A. fabae*.
- c) Repellency effect of certain botanical materials to red spider mite and black bean aphid.
- d) Ultra-violet resistance of certain botanical materials.
- e) Initial and residual activity of two botanical materials against red spider mite and black bean aphid under protective and open semi-field conditions.
- f) Efficiency of two botanical materials against red spider mite and potato aphid on pepper plants at plastic house.