BIOCHEMICAL STUDIES ON SOME AGRICULTURAL RESIDUES

By

HASSAN ISMAIL ALY HAMMOUDA

(B.Sc., Agric., Biochem., 1979) (M.Sc., Agric., Biochem., 1989)

53.254

A thesis submitted in partial fulfilment of the requirments for the degree of

20 S

in
Agricultural Science
(Biochemistry)

Department of Biochemistry Faculty of Agriculture Ain Shams University

1996

 $x_{i}\neq \dots$

BIOCHEMICAL STUDIES ON SOME AGRICULTURAL RESIDUES

 $\mathbf{B}\mathbf{y}$

HASSAN ISMAIL ALY HAMMOUDA

(B.Sc., Agric., Biochem., 1979) (M.Sc., Agric., Biochem., 1989)

This thesis for Ph.D. degree has been approved by:

Prof. Dr. MOAWAD K. ZAHRA

Prof. of Food Microbiology and Chairman of the
Department of Microbiology, Faculty of Agriculture,
Cairo University

Prof. Dr. FAROUK G. MOAWAD

Prof. of Agricultural Biochemistry

Faculty of Agriculture - Ain Shams University

Date of Examination 16/17 / 1995

BICHEMICAL STUDIES ON SOME AGRICULTURAL RESIDUES

By

HASSAN ISMAIL ALY HAMMOUDA

(B.Sc. Agric., Biochem., 1979) (M.Sc., Agric., Biochem., 1989)

UNDER THE SUPERVISION OF:

Prof. Dr. MOHAMED F. ABD EL-HAMID

Prof. of Biochemistry, Faculty of Agriculture, Ain Shams University

Dr. SAMIR A. EL-SAYED

Head Research of fermentation technology, Soils, Water and Environment Research Institute;
Agricultural Research Center.

TO MY DEAR PARENT AND MY WIFE

FOR THEIR SUPPORT,
UNDERSTANDING
DURING THE STUDY
AND
THE PREPARATION OF
THIS THESIS

ABSTRACT

Hassan Ismail Aly Hammouda. Biochemical Studies On Some Agricultural Crop Residuies. Unpublished Ph.D, University of Ain-Shams, Faculty of Agriculture, Department of Agricultural Biochemisstry, 1995.

Lignocellulosic materials are the most abundant renewable resources available for conversion to fuel, chemicals, and single-cell These substances are composed mainly of cellulose, hemicellulose, and heterocyclic compounds, (lignin). Four lignocellulosic substrates; cotton stalks, sugarcane bagasse, maize cobs, and rice straw were used. The native lignocellulosic materials require pretreatments by physical or chemical means for enhancing utilization by the cellulolytic fungi. Different chemical pretreatments (soaking in hot water at 100 and 121°C in autoclave for 1 hr, soaking in 15% HCl at ambient temperature for 6, 12, and 24 hrs; oxidizing agent NaClO2; soaking in 1, 2, 3, 4% NaOH at 121°C in autoclve for 1 hr) were accomplished to make the agricultural crop residues more accessible to degrade by the cellulolytic fungus (Trichoderma reesei). Cellulose contents were icreased from 51.1, 47.6, 40.7, and 44.2 to 72.1, 78.1, 72.9, and 75.7 % while lignin contents decreased from 17.0, 19.1, 16.4, and 11.4 to 9.4, 8.8, 7.7, and 5.6 % when cotton stalks, sugarcane bagasse, maize cobs, and rice straw were treated with 4% NaOH, respectively.

Nutritional upgrading of the chemically pretreated cotton stalks, sugarcane bagasse, maize cobs, and rice straw using the cellulolytic fungus (*Trichoderma reesei*) in solid state cultivation technique was investigated. Theresulting fermented rice straw was protein-rich product (9.8 % as crude protein). The chemical composition profile of the resulting fermented product was also discussed.

Ligninolytic fungi (Phanerochaete chrysosporium and Pleurotus

ostreatus) were used as a biological pretreatment to make the treated substrate available to be used by the single- cell protein producer fungus (*Trichoderma reesei*). The chemical composition profile of the resulting fermented products was also discussed.

Key Words: cotton stalks, sugarcane bagasse, maize cobs, rice straw, chemical pretreatment, biological pretreatment,

Trichoderma reesei, Phanerocheate chrisosporium, Pleurotus ostreatus, solid-state cultivation.

ACKNOWLEDGMENT

The author is indepted to **Prof.Dr. M.F. Abd El-Hamid**, Professor of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University and **Dr. S.A.El-Sayed**, Head Researches of Fermentation Technology, Soils, Water, and Environment Research Institute, Agricultural Research Center for suggesting the problem, supervision, fruitful criticism and unfailing help throughout this work.

The author wishes to express his deepest graditude to **Dr. A.S.El-Nawawy**, Professor of Agricultural Microbiology, Soils, Water, Environment Research Institute, Agricultural Research Center for helping in the preparation and revision this thesis.

The author also thanks all members of Agricultural Biochemistry Dept., Faculty of Agriculture, Ain Shams University and Agricultural Microbiology Res. Dept., Soils, Water, and Environment Research Institute for helping especially all members of Rhizobia Laboratory for using the computer set.

Contents

	page	
1. INTRODUCTION	1	
2. REVIEW OF LITERATURE	3	
2.1. The agricultural crop residues	3	
2.2. Pretreatments of lignocellulosic		
materials	4	
2.2.1. Physical pretreatments	4	
2.2.2. Chemical pretreatments	8 12	
2.2.3. Biological pretreatments	12	
2.2.4. Nutritional upgrading of		
agricultural crop residues	17	
3. MATERIALS AND METHODS	21	
3.1. Materials	21	
3.1.1. Agricultural crop residues	21	
3.1.2. Microorganisms	21	
3.1.3. Microbial media	21	
3.1.3.1. Potato detrose agar		
media	22	
3.1.3.2. Nutrient glucose broth	22	
medium	22	
3.1.3.3. Solid-state medium	22	

	page
3.2. Methods	22
3.2.1. Preparation of	23
fungal inoculum	23
3.2.2. Determination of water	
holding capacity	
3.2.3. Solid-state cultivation	23
technique	22
3.3. Pretreatment methods of	23
agricultural crop residues	24
3.3.1. Physical pretreatment	
3.3.1.1. Soaking in hot water	24
3.3.1.2. Soaking in hot water	24
under pressure	
3.3.2. Chemical pretreatment	25
3.3.2.1. Hydrochloric acid	25
pretreatment	23
3.3.2.2. Sodium chlorite	25
pretreatment	
3.3.2.3. Sodium hydroxide	25
pretreatment	25
3.4. Chemical analysis of the	25
agricultural crop residues	
3.4.1. Determination of total	
soluble carbohydrates	25
3.4.2. Determination of total	
lipids	25
3.4.3. Determination of total	
hemicellulose	26

	page
3.4.4. Determination of cellulose	26
3.4.5. Determination of ash	27
3.4.6. Determination of lignin	27
	27
3.4.7. Determination of total nitrogen	27
3.4.8. Calculations	27
4. RESULTS AND DISCUSSION	29
4.1. Primary evaluation of the	32
chemical pretreatments of the	
agricultural crop residues	32
4.2. Upgrading of chemically	3 2
pretreated agricultural crop residues	
4.3. Bioconversion of agricultural	45
crop residues using mixed culture	
	66
5. SUMMARY	
6. REFERENCES	80
7. APPINDIX	85
8. ARABIC SUMMARY	95