GENETIC ENGINEERING AS A FUTURE HOPE IN PEDIATRICS

61817

Essay

Submitted in partial fulfillment of M.Sc. Degree in **Pediatrics**

By Nagwa Mohamed Zaki

> M.B.,B.Ch. Ain Shams University

92077

Supervised By

Prof. Dr. Mohamed Fouad El Badrawy

Professor of Pediatrics Ain Shams University

Dr. Alyaa Amal Kotby

Assist. Prof. of Pediatrics Ain Shams University (I V

Faculty of Medicine Ain Shams University 1994

CF /1 /

Noth

بسم الله الرحمن الرحيم

﴿قَالُوا سُبُحَاثَكَ لَاعِلَمُ لَنَا إِلَّا مَا عَلَمَتْنَا إِثَكَ أَنْتَ الْعَلَيْمُ الْحَكِيمُ﴾

«صدرق الله العظيم» (سورة البقرة آيه رقم (٣٢)

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Prof. Dr. Mohamed Fouad El Badraway, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his great and continuous encouragement, guidance and help through this study.

I am really very grateful and deeply indebted to Dr. Alyaa Amal Kotby, Assist. Prof. of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind help, good support and keen supervision which helped me to put this work to its best.

Nagwa M. Zaki.

LIST OF CONTENTS

	Page
LIST OF FIGURES	
LIST:OF TABLES ' LIST OF ABBREVIATIONS	
	1
INTRODUCTION AND AIM OF THE ESSAY	1.
REVIEW OF LITERATURE	5
Human genome	5
The packaging of DNA into chromatin	6
DNA chemistry and structure	9
The topology of DNA structure	13
Preservation of genetic information	13
Communication of genetic information	14
Exchange of genetic information	16
Structure of genes	18
Parts of a gene that are not transcribed	20
Parts of a gene that are transcribed but not translated	21
Genetic engineering	23
Basic definition	23
Principles of gene manipulation	23
Restriction endonucleases	24
Cloning vectors	26
Recombinant DNA cloning	29
Gene therapy	33
Introduction	33
Potential levels for the gene therapy	34
Strategies for gene therapy	35
Crieteria for somatic gene therapy	37
General models for gene therapy	39
Methods of gene insertion	41
Physical methods	41
Viral methods	45

Recombinant DNA diagnostic techniques	55
Restriction enzymes	58
Southern blotting and DNA hybridization	60
DNA probes	63
Polymerase chain reaction (PCR)	66
Ligase chain reaction (LCR)	68
Fluorescence in situ hybridization	71
Medicine and molecular biology	72
Human genetic disorders potentially treatable by	77
somatic gene therapy	
Immunodeficiency caused by adenosine deaminase	80
deficiency	
Thalassemia and the hemoglobinopathies	85
Clotting disorders and other diseases involving	93
circulating gene products	
Phenyl ketonuria and inborn errors of hepatic metabolism	98
Lesh-Nyhan syndrome and other central nervous system	102
diseases	
Familial hypercholesterolemia	108
Storage diseases	112
Duchenne and Becker muscular dystrophies	115
Cystic fibrosis and alpha-1 antitrypsin	120
Acquired diseases	125
Genetic engineering as a future hope in pediatrics	131
SUMMARY AND CONCLUSION	134
REFERENCES	139
ARABIC SUMMARY	

LIST OF FIGURES

Fig. No.	Title	Page
l	The packaging of DNA into chromatin	7
2	The structure of DNA	11
3	Space filling model of DNA	12
4	The flow of genetic information	15
5	The Holliday model for general recombination	17
6	Structure and expression of an idealized gene	19
7	Specific hexanucleotide sequence recognized by restriction endonuclease ECO RI	25
8	Steps involved in making a double-stranded cDNA from single stranded mRNA	28
9	Recombinant DNA cloning	30
10	Two major theoretical routes for the introduction of foreign genes into human patient for the purpose of gene therapy	40
11	Schematic DNA mediated gene transfer using calcium phosphate mediated transfection	42
12	Diagram of the genome of a typical retrovirus	47
13	Life cycle of retrovirus	47
14	Schematic showing production of defective retroviruses	50
l5	Restriction fragment length polymorphism mechanisms	59
16	Southern blotting	62
17	Progression of β ^S DNA diagnosis	64
18	Diagram of the polymerase chain reaction	67
19	Diagram depicting DNA amplification/detection by using LCR	69
20	Detection of the sickle cell mutation using DNA methods	70
21	Genetic correction of CNS defects	105

LIST OF TABLES

Yab.	Title	Page
1	FDA - approved drugs - produced by	75
	recombinant DNA	
2	Diseases caused by single gene defects: current	79
	targets for gene therapy	
3	Hemoglobinopathies	86
4	Genetic modification of TIL for use in the gene	127
	therapy of cancer	

LIST OF ABBREVIATIONS

AAV Adeno associated virus
AAT Alpha-1 antitrypsin

A Adenine

ADA Adenosine deaminase

Ado Adenosine

AIDS Acquired immunodeficiency syndrome

ASO Allele specific oligonucleotide
BMD Becker muscular dystrophy
BMP Bone marrow transplantation

bp Base pairC Cytosine

cAMP Cyclic adenosine monophosphate

cDNA Complementary DNA

CFTR Cystic fibrosis transmembrane conductance regulator

CF Cystic fibrosis

CNS Central nervous system

dAdo Deoxyadenosine

DMD Duchenne muscular dystrophy

DNA Deoxyribonucleic acid

FH Familial hypercholesterolemia
FIH Fluorescence in situ hybridization

G Guanosine

Gc Glucocerebrosidase

HCT Hepatocellular transplantation
HIV-1 Human immunodeficinecy virus-1

HPRT Hypoxanthine phosphoribosyl transferase

IL-2 Interleukin-2

kb Kilo base

LCR Ligase chain reaction

LDLR Low density lipoprotein receptors

mRNA Messenger RNA

OTC Ornithine transcarbamylase
PCR Polymerase chain reaction

rec A Recombinase A

RFLP Restriction fragment length polymorphism

RNA Ribonucleic acid

SCID Severe combined immunodeficiency

T Thymine

TIL Tumor infilterating lymphocytes

TNF Tumor necrosis factor

U Uracil

VIIIc Antihemophilic factor

VNTR Variable number of tandem repeats

VWD Von willebrand disease
VWF Von willebrand factor

INTRODUCTION AND AIM OF THE ESSAY

INTRODUCTION

Genetic engineering is the application of recombinant DNA technology (Zasloff, 1992).

In broad terms, applications of recombinant DNA technology can be divided into four areas: biomedical, basicbiological, agricultural, and industrial. Biomedical applications include the elucidation of the cellular and molecular bases of a broad spectrum of diseases, as well as in clinical medicine where both diagnostic and therapeutic applications are being pursued (Kappy et al., 1983).

Recent advances in recombinant DNA technology have led to an increase in our understanding of the molecular basis of many genetic diseases. Approximately 3500 different human genetic diseases are known, and as the genes responsible for these diseases are identified and cloned, many advances in treatment will be made. These advances have already been translated into improved methods for the prenatal diagnosis of many diseases and the use of recombinant gene products in treatment regimes (Anderson 1984, Kantoff et al., 1988, Williams 1988, Friedmann, 1989).

Recombinant DNA procedures have now been applied for the identification of molecular defects in man that account for heritable diseases, somatic mutations associated with neoplasia, and acquired infectious diseases. Thus recombinant DNA technology has rapidly expanded our ability to diagnose disease. There can be no doubt that DNA diagnosis has already made substantial contributions to the diagnosis of disorders such as sickle cell anaemia, thalassemia, Duchenne muscular dystrophy and cystic fibrosis (Caskey, 1987).

Therapy of genetic diseases may be attempted at three different levels in the evolution of the disease process. At the first level after clinical manifestations have appeared, treatment is symptomatic. At the second level, mid way between the origin of the disease and the appearance of clinical manifestations, therapy consists of adiminstration of a normal gene product such as insulin in diabetes and factor VIII in hemophilia. At the third level, the origin of the disease, methods involve correcting the gene defect and are currently under investigation (Karp, 1980).

The DNA technology has already resulted in the synthesis in microorganisms of a number of useful proteins such as vaccines, insulin and interferon (Baxter, 1983).

However, with further developments in recombinant DNA technology it will soon be possible to correct the genetic defects themselves in affected individuals, through the use of somatic gene therapy techniques in which the gene is only introduced into the somatic cells of the patient and not into the germ line. Therefore, the gene can only be expressed in those cells into which it was introduced and their progeny cells, but it can not be passed on to subsequent generations of children (Kinnon et al., 1990).

AIM OF THE ESSAY

This essay will be done to study the impact of genetic engineering and DNA technology on the future of pediatric problems.