EFFECT OF MANUFACTURING STEPS ON MICROORGANISMS AND TOXINS IN SOME BAKERIES PRODUCTS

By

MOHAMED ABD EL SAMIE EL AZAB

ف مکه طعلومان الجامعیة در النسجین میکرو ویدمیا شد النسجین میکرومیم از طبکرومیم

A thesis submitted in partial fulfilment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

IN

Agricultural Science
(Agricultural Microbiology)

Department of Agric. Microbiology

Faculty of Agriculture
Ain Shams University

1992

Approval Sheet

EFFECT OF MANUFACTURING STEPS ON MICROORGANISMS AND TOXINS IN SOME BAKERIES PRODUCTS

bY

MOHAMED ABD EL SAMEI EL AZAB

B.Sc. (Agric. Microbiology), Ain Shama Univ. 1977

M.Sc. (Agric. Microbiology), Ain Shams Univ. 1985

RADU Sandan

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Raowf El - Saadany

Prof. of Food Technology.

Faculty of Agric., Moshtohor

Zagazig Univ.

Prof. Dr. Abd El-Mohsen A.A. Refaat
Prof. of Agric. Microbiology,

Fac. of Agric., Ain Shams Univ.

Prof. Dr. Saad A.Z. Mahmoud

Prof. of Agric. Microbiology & Ex-Dean

Faculty of Agric., Ain Shams University.

Date of examination : 8 / 11/ 1992

CONTENTS

			Page
LIST C	F TAE	BLES	
INTROD	UCTI	N	1
REVIEW	OF I	LITERATURE	3
1.	The r	microbial load of bakery raw materials	3
	1.1.	Microbial load of flours	3
	1.2.	Microbial types in flours	5
	1.3.	Microbial load of dried milk	7
	1.4.	Microbial types in dried milk	8
	1.5.	Microbial load of fats and oils	10
	1.6.	Microbial load of sugars	12
2.	Micro	obial load of bakery products	14
	2.1.	Bread	14
	2.2.	Other bakery products	15
3.	Facto	ors affecting survival and growth of	•
	micro	corganisms in bakery products	17
	3.1.	Temperature	17
		pH	
		Water activity (a_{ij})	
	3.4.	Chemical additives	22
		3.4.1. Leavening agents	21
		3.4.2. Preservatives	2.5
	3.5.	Packaging materials	2.6
	3.6.	Storage period	3.9
4.	Stap	hylococcal enterotixins	31
	4.1.	Incidence of enterotoxigenic staphylococci in	
		foods	. 33
		4.1.1. Cream supplemented foods	
		4.1.2. Other foods	37
Ę	Occur	rrence of molds in some dereal products	ಶನ

		Page
6.	Occurrence of aflatoxins in some cereal products .	42
7.	Aflatoxin production	44
8.	Effect of some salts used in bakeries on fungal	
	growth and aflatexin production	45
9.	Effect of processing of bakery products on	
	aflatoxins destruction	46
10.	Detoxication of aflatoxins	49
	10.1. Physical methods	49
	10.2. Chemical methods	56
	10.2.1. Detoxication by acid and base agents	5 6
	10.2.2. Detoxication by ammoniation	60
MATER	IALS AND METHODS	65
1.	Microbiological analysis	66
	1.1. Total microbial count	6 δ
	1.2. Spore count	67
	1.3. Coliform count	67
	1.4. Detection of salmonella, shigella and proteus	68
	1.5. Differentiation between Salmonella and	
	Shigella	69
	1.6. Differentiation between Salmonella, Shigella	
	and Proteus	69
	1.7. Staphylococci count	70
	1.8. Yeast and mold count	72
2.	Effect of processing, addition of preservatives	
	and storage conditions on the keeping quality of	
	some bakery products	72
	2.1. Bread	72
	2.2 Biscuits and wafer	73
3.		
	Chemical analyses	73
	Chemical analyses	
		73
	3.1. Total nitrogen	73 74

	Page
3.5. Peroxide and acid numbers	- 74
4. Detection of enterotoxin "A" in cream	- 74
5. Evaluation of the effects of different processe	S
and chemical additives on enterotoxin "A" in crea	.m 76
6. Assay of aflatoxins	. 76
6.1. Screening study for determining aflatoxin i	
raw materials	76
6.2. Aflatoxins standards	• 76
6.3. Preparation of aflatoxin standard solution	76
6.4. Determination of aflatoxins	. 76
6.4.1. Preparation of TLC standards	77
6.4.2. Thin layer chromatography plate	. 77
6.4.3. Purity of standards	. 77
6.4.4. Confirmative tests of aflatoxins	75
6.4.5. Extraction of aflatoxins from samples	78
7. Evaluation of the effects of different processe	es
and chemicals on the destruction of aflatoxins	in
bread and biscuits	79
RESULTS AND DISCUSSION	80
1. Microbial load of raw materials used in bakteries	5. 8€
1.1. Flour	80
1.2. Egg powder	• • 85
1.3. Dried skim milk	87
1.4. Fats and oils	90
1.5. Starch, glucose and sucrose	90
1.6. Water	95
2. Microbial load of some bakery products	•• 95
2.1. Biscuits	•• 97
2 1 1 Effect of kneeding on the microbi	٦٦

		·	
		load of biscuits	<u> </u>
	2.1.2.	Effect of leavening agents on the	
		microbial load of biscuits	9 9
		2.1.2.1. Sodium bicarbonate	يا فو
		2.1.2.2. Ammonium bicarbonate	351
	2.1.3.	Effect of processing aid (sodium	
		metabisulphite) on the microbia load	
		of biscuits	
	2.1.4.	Microbial load of biscuits after baking	704
	2.1.5.	Effect of storage on the microbial	
		load of biscuits	
	2.2. Toast h	oread	1.19
	2.2.1.	Effect of different processes on the	
		microbial load of toast bread	1, 1, 2
	2.2.2.	Effect of preservatives on the	
		microbial load of toast bread	112
		2.2.2.1. Potassium scrbate	1.2
		2.2.2.2. Propionic acid	115
	2.2.3.	Effect of storage temperature on the	
		microbial load of toast bread	11:
	2.3.4.	Effect of wrapping materials in the	
		microbial load of toast bread	1::
З.	Occurrence o	of enterctoxin A in cream	
4 .	Effect of the	ne addition of some obericals used in	
	bakeries. m	ixing and pasteurization on enterotoxin	
	A in cream .		1,5
5.	Aflatoxins :	in bakery raw materials and products	131
	5.1. Googreens	ne of molds, in some bakery products	131
	5.2. Occurre	ence of aflatoxins in some bakery raw	
	materia	als	133
6.	Effect of b	read processing on aflatoxin destruction	133

(v)

	rage
6.1. Effect of bread processing on aflatoxin B.	
destruction without addition of preservatives	133
6.2. Effect of bread processing on aflatoxin B:	
destruction in the presence of some	
preservatives	135
6.3. Effect of bread processing on aflatoxin $G_{\underline{i}}$	
destruction without the addition of	
preservatives	137
6.4. Effect of bread processing on aflatoxin G	
destruction in the presence of some	
preservatives	137
7. Effect of biscuit processing on aflatoxin	
destruction	140
7.1. Effect of biscuit processing on aflatoxin B.	
destruction	140
7.2. Effect of biscuit processing on aflatoxin B_1	
destruction in the presence of some commonly	
used chemicals	142
7.3. Effect of biscuit processing on aflatoxin G	
destruction	144
7.4. Effect of biscuit processing on aflatoxin G.	
destruction in the presence of some commonly	
used chemicals	144
SUMMARY	148
REFERENCES	158
ARABIC SUMMARY	

LIST OF TABLES

Tabl	i e	Page
1.	Microbial load of flour in relation to their chemical	
	analysis	81
2.	Mold losad in wheat flour	84
З.	Microbial load of egg powders in relation to their	
	chemical analysis	රි රි
4.	Microbial load of dried skim milks in relation to	
	their chemical analysis	8.8
5.	Microbial load of fats and oils in relation to their	
	chemical analysis	<u>91</u>
6.	Microbial load of sucrose and glucose in relation to	
	their chemical analysis	93
₹.	Microbial load of starch in relation to its chemical	
	analysis	54
Ξ.	Microbial load of water from different sources	9-5
9.	Effect of mixing process on the microbial content of	
	the dough of different biscuits (without the addition	
	of chemical additives)	9 5
11.	Effect of sodium bicarbonate (0.57%) on the microbial	
	content of the dough of different bisquits	_ : :
11.	Effect of ammonium bicarbonate (1.43%) on the	
	riorobial content of the dough of different biscuits.	
: 2.	Effect of sodium metabisulphite (0.025%) on the	
	microbial content of the dough of hard biscuits	1:3
13.	Microbial and chemical analyses of soft hard bisquits	
	and wafer with bream just after backing in the	
	presence of chemical additives	115
14.	Microbial content and chemical analysis of different	
	biscuits and wafer just after baking without the	
	addition of chemical additives	11£
15.	Microbiological and chemical changes in different	
	biscuits after storage for 3 months at room	
	temperature (30°C)	

		Page
16.	Microbial content of toast bread during processing	
	and after baking in relation to its chemical analysis	110
17.	Effect of potassium sorbate (0.2%) on the microbial	
	load of toast bread during processing and after	
	baking	113
18.	Effect of propionic acid (0.2%) on the microbial load	
	of toast bread during processing and after baking	114
19.	Microbiological and chemical analyses during storage	
	of toast bread at -18°C	117
20.	Microbiological and chemical analyses during storage	
	of wax paper wrapped toast bread at room temperature	
	in winter (20°C)	118
21.	Microbiological and chemical analyses during storage	
	of wax paper wrapped toast bread at room temperature	
	in summer (30°C)	120
22.	Microbiological and chemical analyses during storage	
	of wax paper wrapped toast bread at room temperature	
	in summer (30°C) in the presence of propionic acid	
	(0.2%)	121
23.	Effect of wrapping materials on the microbial load of	
	toast bread after storage at different temperatures.	123
24.	Microbial load of cream as affected by the addition	
	of some chemical additives	126
25.	Effect of some chemicals commonly used in bakeries on	
	enterotoxin A in cream	129
26.	Effect of mixing and pasteurization on enterotoxin A	
	in cream	130
27.	Isolated molds from bread and some bakery products	132
28.	Effect of different processes on aflatoxin B ₁ during	
	bread making without addition of preservatives (on	
	dry weight basis)	134
29.	Effect of different processes on aflatoxin B during	
	bread making in the presence of preservatives (on dry	
	weight basis)	136
3.0	Effect of different processes on aflatovin C during	

		Page
	bread making without the addition preservatives (on	
	dry weight basis)	138
31.	Effect of different processes on aflatoxin G: during	
	bread making with the addition of preservatives (on	
	dry weight basis)	139
32.	Effect of biscuit making on aflatoxin B: (on dry	
	weight basis)	141
33.	Effect of biscuit making on aflatoxin $B_{\dot{1}}$ in the	
	presence of commonly used chemicals (on dry weight	
	basis)	143
34.	Effect of biscuit making on aflatoxin $G_{:}$ in the	
	presence of commonly used chemicals (on dry weight	
	basis)	145
35.	Effect of biscuit making on aflatoxin $G_{\underline{\cdot}}$ in the	
	presence of commonly used chemicals (on dry weight	
	basis)	326

ACKNOWLEDGEMENT

Praise and thanks be to ALLAH, the most merciful for assisting and directing me to the right way.

The author wishes to express his deepest gratitude to Prof. Dr. S.A.Z. MAHMOUD, Prof. of Agric. Microbiology and ex-Dean of Faculty of Agriculture, Ain Shams University, Prof. Dr. A. HAZEM Y. TAHA, Prof. of Agric. Microbiology, Agric. Microbiol. Dept. and Prof. Dr. FERIAL M. ABU SALEM, Prof. of Food Technology. National Research Center for suggesting the problem. supervision, helpful guidance and progressive criticism and for their valuable advices.

The author is greatful to all the members of Mycotoxin Lab., NRC. Cairo, Egypt for providing facilities and valabule help in estimating aflatoxins in raw materials and products.

Thanks are also due to Frof. Dr. F. SEDDER, Prof. of Food Sanitation. Nutrition Inst., Cairo, Egypt. for his help in studying enterotoxins.

Sincere thanks and gratitude are also extended to Frof. Dr. M.A. FL-BOROLLOSY, Frof. of Agric. Microbiology Agric. Microbiol. Dept., Fac. Agric., Ain-Snams Univ. for his fruitful discussions and valuable help he offered in preparing the manuscript.

Special thanks are also due to Eng. S.A. DAWOUD, Chairman of the Egyptian Company for Foods (Bisco Misr) and all my colleagues in the company for providing facilities and encouragement.

EFFECT OF MANUFACTURING STEPS ON MICROORGANISMS AND TOXINS IN SOME BAKERIES PRODUCTS

By

MOHAMED ABD EL SAMEI EL AZAB

B.Sc. (Agric. Microbiology), Ain Shams Univ. 1977M.Sc. (Agric. Microbiology), Ain Shams Univ., 1985under the supervision of :

Prof. Dr. S.A.Z. Mahmoud

Prof. of Agric.Microbiology, Dept. of Agric. Microbiology, and ex-Dean of Fac. of Agriculture, Ain Shams Univ.

Prof. Dr. A. Hazem Y. Taha

Prof. of Agric. Microbiology, Dept. of Agric. Microbiology,

Fac. of Agriculture, Ain Shams Univ.

Prof. Dr. Ferial M. Abu-Salem

Prof. of Food Technology, National Res. Cen., Dokki, Giza.

ABSTRACT

Bisco Misr Co. produces different bakery products which are most popular in Egypt such as biscuits and bread.

To access the importance of such products as being a source of infectious diseases, certain organisms especially those of *Staph. aureus* produce enterotoxins and other microbial groups which contribute to food spoilage were studied in the ingredients from which these products are made. Besides the effect of processing steps on microorganisms, enterotoxin and

aflatoxin destruction were also investigated. The obtained results show that, strong flour harboured higher densities of total microorganisms than the soft one. Densities of spores of aerobic spore forming bacteria, coliform bacteria, yeast and fungi were found to be higher in the case of soft flour. Egg powder (II) proved to be the best one that contained low microbial density. It was also found that dried skim milk VI is microbiologically the cleanest one. Hydrogenated vegetable oils harboured very low microbial densities, low spores and fungal counts.

Microbiological analysis of glucose, sucrose and starch showed that the former (glucose) contained high densities of total microbial flora, spore counts as compared with sucrose and starch. Water however, was found to contain low densities of total microbes, spore count, yeast and fungi. Results also show that doughs of soft biscuits harboured higher microbial counts, spore densities, yeast and fungi than those detected in hard ones. Addition of sodium bicarbonate (0.57%) increased relatively total microbes and spore counts in treated doughs of both tested biscuits, yeast and fungi decreased to large extent. Effect of ammonium bicarbonate treatment showed nearly the same effect of sodium bicarbonate as regards to microbial load of tested doughs. Wafer with cream harbourd the highest densities of total microorganisms, spores and contaminated with coliform. Hard biscuits proved to be the lowest ones in containing microbes. Microbial load of different biscuits and wafer with cream considerably affected by the addition of some

chemical additives. Total microbial and spore counts in both types of hard biscuits considerably increased in the absence of sodium metabisulphite.

Storage of biscuits for 3 months at room temperature showed considerable increase in total microbial count, spores, yeast and fungi. The highest increase was recorded in wafer with cream.

Bread showed gradual increase in total microbial counts after kneading and after primary and final fermentation. Total microbial counts, yeasts and fungi gradually increased during processing of bread.

Addition of potassium sorbate during kneading decreased considerably microbial load after primary fermentation. Yeasts and fungi completely disappeared after baking whilest bacterial densities sharply dropped..

Densities of total microbes, spores, coliforms, yeasts and fungi gradually decreased after the first day of storage at 20°C (room temperature in winter). It was found that propionic acid decreased counts of yeast and fungi due to its antifungal effect. Comparing different packaging materials shows that waxed paper is the most suitable material for wrapping toast bread, while cellophane proved to be the worst material used in this respect. The effect of preservatives indicate that potassium sorbate (0.2%) is the most effective preservative against staphylococci, since it completely disappeared after such treatment. Sorbic acid (0.2%) drastically affected staphylococcal growth in cream. Propionic acid (0.2%) came