THE INFIUENCE OF DIFFERENT SUPPLEMENTAL NITROGEN SOURCES ON POOR QUALITY ROUGHAGE UTILIZATION BY THE RUMINANTS.

BY

SAFAA ABD EL-MONEM SALEH

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultura GCIENCE

(Animal Nutrition)

Department of Animal production

Faculty of Agriculture

Ain Shams University

1991

Approval sheet

THE INFLUENCE OF DIFFERNT SUPPLEMNTAL NITROGEN SOURCES
ON POOR QUALTY ROUGHAGE UTILIZATION BY THE RUMINANTS

BY

SAFAA ABD EL MONEM SALEH

B.SC. Agric. (Animal production), Ain-shams University.1983

This thesis for M.Sc. degree has been approved by:

Prof. Dr. H.M. Khattab H.M. Khattat Prof. of Animal Nutrition, Ain-Shams University.

Date of examination: 3/10/1991

ACKNOWLEDGEMENTS

I am deeply indebted to Prof. Dr. M. A. EL- Ashry, Professor of Animal Nutrition and Head of the Department of Animal Production, Faculty of Agriculture, Ain Shams University, for providing help and guidance during the course of this work.

Thanks are also due to Prof. Dr. A. M. El-Serafy. Professor of Animal Nutrition. Faculty of Agriculture. Ain Shams University for his helpful discussion.

To Prof. H.A. El- fouly, I owe my sincere thanks for his constructive criticism and his help as constant source of encouragement and attentive help through the course of this work. Grateful acknowledgement should also be extended to Dr. H. M. Gado who provided continous encouragement and sincere help throughout the stages of writing this manuscript.

Appreciation is also expressed to the staff membres and technicians of the Animal Nutrition Research unit, Nuclear Recearch Center for the facilities that made this work feasible.

Cordial thanks and gratitude to all my family for their enconuragement by all possible means.

List of Abbreviotions

DM = Dry matter.

OM = Organic matter.

CP = Crude protein.

CF = Crude Fiber.

IVDMD = In vitro dry matter digestion.

IVOMD = In vitro organic matter digestion.

IVCFD = In vitro crude fiber digestion.

NAN = NON ammonia nitrogen.

NPN = NON protein nitrogen.

 $NH_3-N = Ammonia.$

Lw = Live wieght.

 $Kgw^{0.75}$ = Metabolic bady weight.

NS = Not significant.

VS = Versus.

SBM = Soybean meal.

LSM = Linseed meal.

FM = Fishmeal.

LLM = Leucaena leave meal.

CSM = Cotton seed meal.

CA ≈ Casein.

U = Urea.

S.O.N = Source of nitrogen.

S.O.P = Source of Protein.

S.O.V = Source of variation.

Contents

Introduction
Review of literature
1- Structure of carbohydrates
1-1 Soluble carbohydrates 2
1-2 Fiber components
a- Cellulose
b- Hemicellulose 4
c- Lignin
1-3 Effect of non structural carbohyrates on fiber
digestion
1-4 Effect of carbohydrates on nitrogen utilization6
2- Nutritive value of straw
2-1 Methods for improving nutritive value of straw. 8
2-1-1 Physical/Mechanical 8
2-1-2 Chemical treatment
3- Fermentation of fibre in the rumen
3-1 Colinisation and microbial attachment10
3-2 Microbial cell synthesis
3-3 Requirement of Microorganisms
3-3-1 The specific Nitrogen requirement of rumen
mícroorganisms
3-3-2 Ammonia as the principal source of N for
microorganisms
3-3-3 Regulation of PH in the rumen16
3-4 Estimates of microbial protein

4- Supplementation or microbial protein 18
4-1 Effect of N sources on digestion 19
4-2 Effect of urea on digestion
4-3 Effect of levels of N on digestion22
4-4 Effect ofdifferent levels of urea on digestion24
Materials And Methods
Experiment (1)
Experiment (2)
Experiment (3)
Experiment (4)
Analytical procedures
Determination of ammonia -N in rumen fluid
Crude fiber determination
Determination of migrobial protein
Determination of microbial protein
Statistical analysis
Results
Experiment 1
Experiment 2
Experiment 3
Experiment 4
Discussion
Summary and Conclusion
References
Appendix
Arabic Summary

List of Tables

Tables		page
1- Checmical co	mposition of dietary ingredients	34
2- Effect of di	fferent sources of nitrogen and roughages o	n dry
matter diges	tion in vitro(IVDMD%)	35
	fferent souces of nitrogen and roughages on	
	tion in vitro(IVOMD%)	
	ferent sources of nitrogen and roughages of	
	ion in vitro (IVCFD%)	
	fferent sources of nitrogen and roughages of	
) ml concentration	
	fferent sources of nitrogen and roughages o	
	· · · · · · · · · · · · · · · · · · ·	
	ferent sources of nitrogen and roughages of	
	ferent sources of protein and roughages on	
	ion in vitro (IVDMD%)	
	ferent sources of protein and roughages on o	
	ion in vitro (IVOMD%)	
	ferent sources of protein and roughages on	
	ion (IVCFD%)	
	fferent sources of protein and roughages of	
	0 ml in vitro	
	ferent sources of protein and roughages on	
	fferent sources of protein and roughages or	
	vitro	- 57

14- In vitro dry matter digestion of roughage sources as
influenced by different levels of SBM supplements (IVDMD%) .59
15- In vitro organic matter digestion of roughage sources as
influened by different levels of SBM supplements (IVOMD%) . 60
16- In vitro crude fiber digestion of different soyrces of roughage
as influenced by SBM supplements (IVCFD%)61
17- In vitro dry matter digestion of different sources of roughage
as influenced by fish meal supplements (IVDMD%) 62
18- In vitro organic matter digestion of different sources of
roughage as influenced by fishmeal supplements (IVOMD%)., 63
19- In vitro crude fiber digestion of different sources of roughage
as influenced by FM supplements (IVCFD%)
20- In vitro dry matter digestion of different sources of
roughageas influenced by urea supplements (IVDMD%) 72
21- In vitro organic matter digestion of different sources of
roughage as influenced by urea supplements (IVOMD%)73
22- In vitro crude fiber digestion of different sources of roughage
as influenced by urea supplements (IVCFD%)
23- Effect of SBM levels on NH3-N concentration in vitro75
24- Effect of FM levels on NH3-N concentration in vitro76
25- Effect of urea levels on NH3-N concentration in vitro77
26- Effect of various levels of nitrogen treatment of rice straw
on the in vitro bacteria growth rate
27- Effect of various levels of nitrogen treatment of wheat straw
on the in vitro bacteria growth rate
28- Effect of various levels of nitrogen treatment of

	hay on the in vitro bacteria growth rate
29-	Effect of defferent sources of N on in vitro digestion
	when pure cellulose used as substrate 82
30-	Effect of different sources of protein on in vitro
	digestion when pure cellulose was used as substrate 84
31-	Effect of SBM levels on pure cellulose
	digestion % in vitro
32-	Effect of FM levels on pure cellulose
C	digestion % in vitro
33 -	Effect of urea levels on pure cellulose
	digestion % in vitro
34-	Effect of various level of nitorgen treatment of pure
	cellulose on the in vitro bacteria growth rate

List of Figures

Figure	Page
1- Effect of casein replaced by urea on DMD% in vitro	83
2- Effect of casein replaced by urea on OMD% in vitro	39
3- Effect of casein replaced by urea on CFD% in vitro	40
4- Effect of casein replaced by urea on NH3-N concentration .	. 45
5- Effect of different sources of protein on IVDMD%	51
6- Effect of different sources of protein on IVOMD%	52
7- Effect of different sources of protein on IVCFD%	53
8- Effect of nitrogen levels on IVOMD% of rice straw	58
9- Effect of nitrogen levels on IVOMD% of Hay	66
10- Effect of nitrogen levels on IVOMD% of wheat straw	67
11- Effect of nitrogen levels on IVCFD% of rice straw	68
12- Effect of nitrogen levels on IVCFD% of Hay	69
13- Effect of nitrogen levels on IVCFD% of Wheat straw	70
14- Effect of nitrogen levels on IVDMD% of Pure cellulose	90
15- Effect of nitrogen levels on IVOMD% of pure cellulose	91
l6- Effect of nitrogen levels on IVCFD% of pure cellulose	92

List of Appendix

APPIN DEX Pag
1- ANOVA of the effect of casein replaced by urea on dry
matter, Organic matter and crude fiber digestion
in vitro
2- ANOVA of the effect of casein replaced by urea on PH
values, NH ₃ -N and NaN
3- ANOVA of the effect of different sources of protein on dry
matter, organic matter and crude fiber digestion
in vitro
4- ANOVA of the effect of different sources of protein on PH
volues, NH3-N and NAN
5- ANOVA of the effect of different levels of nitrogen on dry
matter and organic matter digestion in vitro 132
6- ANOVA of the effect of different levels of nitrogen on
crude fiber digestion in vitro and
NH ₃ -N concentration
7- ANOVA of the effect of casein replaced by urea on pure
cellulase of digestion in vitro
8- ANOVA of the effect of different sources of protein on pure
cellulose digestion in vitro
9- ANOVA of the effect of different levels of nitrogen on pure
cellulose digestion in vitro

THE INFLUENCE OF DIFFERENT SUPPLEMENTAL NITROGEN SOURCES
ON POOR QUALITY ROUGHAGE UTILIZATION BY THE RUMINANTS.

BY

SAFAA ABD EL-MONEM SALAH

B.Sc. AGRIC. Sci. (Animal production) Ain Shams university 1983

Under the supervision of : Prof. Dr. M.A. El-Ashry

Prof. Dr. A.M. El-Serafy

Prof. Dr. H.A. El-Fouly

ABSTRACT

A series of experiments were conducted to compare the effects of different sources of protein supplements on ruminal fermentation characteristies and microbial growth .

The obtained the results indicated that:

- 1- In vitro digestibility was significantly (P < 0.05) improved with hay as a substrate when compared with wheat straw and rice straw because of the availability of nitrogen from different roughage sources was different.
- 2- Nitrogen supplementation from casein increased (P < 0.05) digestion of the roughages, but such a response was less likely with urea .
 - 3- The values of IVDMD % , IVOMD % and IVCFD % were highest

- (P < 0.05) with the roughages supplemented with soybean meal as compared with the other sources of protein.
- 4- The digestion rate increased with increasing levels of protein supplementation, the increments in IVDMD %, IVOMD % and IVCFD% were significant (P < 0.05) for the low levels of supplementation in contrast to the non significant (P>0.05) higher levels.
- 5- When pure cellulose was used in lieu of and in a comparison with physical roughages most of the results turned out to be inagreement.

Introduction

In Egypt, Little cultivable land can be allocated to forage production because of the need to grow human food. So straws are produced during cereal grain production are used as the basal feed for a large proportion of the ruminants. Crop residues and mature tropical pasture grasses are classed as low quality roughages that have many negative properties such as reduced palatability, low digestible protein, mineral and vitamin contents. The improvement in the feeding value of straw obtained when treated with various methods.

These include physical and chemical treatments of lignocellulotic crop residues increases digestibility.

The success of any of these methods of treatment depends upon adequate nitrogen being available for rumen microorganisms.

The present research was concerned with improved degradation and fermentability of cell wall by rumen microorganism when the roughages were treated with the different source of protein therefore the objectives of this experiment were to

- 1- Determine the level of urea-N which could effectively replace true protein-N without depressing fermentation by ruminal microbes
- 2- Determine the effect of different protein sources on fiber digestion of the substrates.
- 3- Determine the level of nitrogen which increasing the digestion and ruminal microbial growth.
 - 4- Determine the effect of these factors with pure cellulose.