THE EFFECT OF EXCHANGEABLE MAGNESIUM
ON GROWTH AND NUTRIENTS UPTAKE

Ву

KOUT EL-KOLOUB S. ABDEL-FATTAH
B.Sc., M.Sc. (Soils), Univ. of Ain Shams

Thesis

Submitted in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in Soil Science
June, 1970

Soils Department
Faculty of Agriculture
University of Ain Shams

A Contribution from The National Research Centre of The U.A.R.

APPROVAL SHEET

: Kout El-Koloub Soliman Abdel-Fattah Name

: The Effect of Exchangeable Magnesium on Growth

and Nutrients Uptake.

Thesis has been approved by :

Prof. Dr.: HHambe Prof. Dr.: (1.46)

Prof. Dr.: - / two:

Date : 1 / 1970

...00000...

ACKNOWLEDGMENT

The author is greatly indebted to Dr. H. Hamdi, Professor of Soil Science and Dean of the Faculty of Agriculture, University of Ain Shams, and to Dr. G. Abdel-Samie, Professor of Soil Science and Head of Soils Laboratory; The National Research Centre, for general planning of the work, supervision, sincere help and valuable suggestions.

Grateful acknowledgment to Dr. A. El-Damaty, Professor of Soil Science, Faculty of Agriculture, University of Ain-Shams, and to Dr. R.J. Arkely, Associate Professor, Soils and Plant Nutrition Dept., University of Berkely, U.S.A. for their generous help and constructive ideas.

The writer also wishes to express her sincerest appreciation and deepest gratitude to Dr. A.C. Schuffelen, Professor of fessor of Soil Fertility, to Dr. Ir. G.H. Bolt, Professor of Soil Physics and Soil Chemistry, to Dr. Ir. F.F.R. Koenigs.

Lecturer of Soil Physics, to Ir. V.I.G. Houba and to Ir.

I.H.G. Slangen for their valuable guidance, helpful suggestions and for the many invaluable advices through the most of this work which has been made in the Department of Soil Pertilizers of the State Agricultural University of Wageningen, the Netherlands, Special thanks are also extended to

all members of the Department of Soils and Fertilizers, to Dr. L. Van der Plas and members of the Mineralogical Laboratory of the Agricultural University of Wageningen.

Special acknowledgment is accorded to the authorities of the Ministry of Foreign Affairs, the Netherlands, to the State Agricultural University of Wageningen for financial grants and to the authorities of the National Research Centre, U.A.R., for a study leave to the Netherlands.

...00000...

CONTENTS

			Page
1.	INTRO	DUCTION	1
2.	REVII	ew of literature	3
_,	2.1.	The Effect of Mg on the Physical, Chemical and Mineralogical Properties of Soil	3
	2.2	The Formation of Mg Soil	15
	2.3	The Effect of Ca:Mg Ratios on the Growth and Nutrients Uptake	19
3.	MATE	RIALS AND METHODS	34
-	3.1	Profile Sampling and Descriptions	34
	3.2	Chemical Analyses	40
	3.3	Mineralogical Analyses	42
	3.4	The Formation of Mg Soil	45
	3.5	Factors Affecting Exchangeable Cations Determinations	47
	3.6	Water Culture Experiment	53
	3.7	Soil Culture Experiment	57
4.	RESU	TLTS AND DISCUSSION	63
	4.1	The Definition of the Soil Profiles	63
	4.2	The Formation of Mg Soil	67
	4.3	Factors Affecting Exchangesable Cations Determinations	73
	4.4	Mineralogical Examination of the Soil Samples Under Study	90
	4.5	The Effect of Varying Ca:Mg Ratio on the Growth and Nutrients Up ake by Plant in Water Culture Experiment	100
	4.6	The Effect of Varying Ca:Mg Ratio in Soil	128

	Page
SUMMARY	136
REFERENCES	148
APPENDIX	1
ARABIC SUMMARY.	

...00000...

LIST OF TABLES

Table	Title	Page No.
1	Ca, Mg and SO ₄ (ratios and meq) added per 100 g of surface soil sample of Giza profile (Experiment 1)	4 <i>8</i>
2	Ca, Mg and SO ₄ (ratios and meq) added per 100 g of surface soil sample of Giza profile (Experiment 2)	50
3	The composition of nutrient solutions	54
4	The ratios and concentrations of Ca:Mg in the two concentrations used	55
5	Exchangeable cations (meg/100 g) in the treated samples used for soil culture experiment at different Ca: Mg ratios	60
6	Analyses of soil-water saturation extract	64
7	Exchangeable cations and cation exchange capacity (meq/100 g soil) in the representative profiles	65
8	Particle size distribution in soil profiles (g/100 g soil)	6 6
9	Soluble and exchangeable Ca, Mg and Na in surface sample of Giza profile treated with CaCl ₂ , MgCl ₂ and Na ₂ SO ₄ solutions	68
10	The results of preliminary tests of exchange- able cations (meq/100 g soil) with BaCl2, NH40AC and NaCl methods	73

LIST OF TABLES (Cont.)

Table No.	Title	Page No.
11	Dissolved Ca from CaCO3 in NH4OAC and Mg-acetate solutions (meq/L)	74
12	Soluble salts in soil water extracts (meq/100g)	76
13	Soluble and extractable cations of some treated samples with NH40AC in meq/100 g soil	7 7
14	Exchangeable cations with NH4NO3 in a treated sample and 2-50 u and $< 2 \mu$ fractions of Abou-Said surface soil sample (meq/100 g)	7 9
15	Exchangeable cations of 2-50 u and < 2 u fractions after percolations with 0.14 N(100 g) solution with Bascomb's method (meg/100 g)	80
16	Exchangeable cations with different extractants (meq/100 g)	81
17	Exchangeable cations with different shaking time in meq/100 g with Bascomb's method	84
18	Exchangeable cations with different extractant soil ratio with Bascomb's methods (meg/100 g)	85
19	Exchangeable cations and C.E.C. of treated samples (meq/100 g) with Barcomb's method	89
20	Compilation of X-ray, D.T.A. and electronmicrographic data	93
51	Oxides percentage and equivalent normative compounds in Abou-Said surface sample (0-20 cm)	94
22	Oxides percentage and equivalent normative compounds in Giza sample (60-80 cm)	95

LIST OF TABLES (Cont.)

Table No.	Title	Page No.
23	Results of epinorm and Goethite norm calculations	96
24	Grains yield of stem tillers as percentage of total yield of grains at varying Ca:Mg ratio in low and high salinity treatments	106
25	Dry weight g/10 plants, nutrients content and (C - A) meq/kg in tops of plants grown in soil culture	130
26	Nutrients uptake (meq/10 plants) in tops of plants grown in soil culture	

LIST OF APPENDIX TABLES

Table	Ti.tle	Page No.
1	Dry weight (g/10 plants) and nutrients content (meq/kg) of young plants' roots	1
2	Dry weight (g/10 plants) and nutrients content (meg/kg) of young plants' tops	2
3	Dry weight (g/lo plents) and nutrients content (meq/kg) of old plants' roots	3
4	Dry weight (g/loo plants) and nutrients content (meq/kg) of old plants' stems	4
5	Dry weight (g/10 plants) and nutrients content (meq/kg) of stem's grains of old plants	5

LIST OF APPENDIX TABLES (Cont.)

Table	Title	Page No.
6	Dry weight (g/10 plants and nutrients content (meq/kg) of old plants' tillers	6
7	Dry weight (g/10 plants) and nutrients content (meq/kg) of tillers grains of old plants	7
8	Dry weight (g/10 plants) and nutrients content (meq/kg) of old plants tops	8
9	Dry weight (g/10 plants), nutrients content (meq/kg) and uptake (meq/10 plants) of new tillers of old plants	9
10	Nutrients uptake in micro-equivalent/10 plants of young plants' roots	10
11	Nutrients uptake in micro-equivalent/10 plants of young plants tops	11
12	Nutrients uptake in micro-equivalent/10 plants of old plants roots	12
13	Nutrients uptake in micro-equivalent/10 plants of old plants stems	13
14	Nutrients uptake in micro-equivalent/10 plants of stems' grains of old/plants	14
15	Nutrients uptake in micro-equivalent/10 plants of old plants' tillers	15
16	Nutrients uptake in micro-equivalent/10 plants of tillers grains of old plants	16
17	Nutrients uptake in micro-equivalent/10 plants of old plants tops	17
18	Total cations minus anions (C-A) content in meq/kg in tops of young and old plants	18

LIST OF FIGURES

Fig.	Title	Page No.
No.		
1	A schematic drawing of a container used in growing wheat in water culture solution	55
2	A schematic drawing of pots used in growing wheat in soil culture experiment	61
3	Extractable cations and Ca/(Ca+Mg) percentage with NH4OAC, BaCl2 and NaCl methods	81
4	The effect of shaking time on the extractable cations	83
5	Relationship of C.E.C. and extractable cations (meq/100 g) with different extractant-soil ratios	83
6	Extractable Na, K, Ca and Mg with different extractant-soil ratios	86
7	The relations between the percentage ionic ratios and extractant-soil ratios	67
8	X-ray diffraction patterns of oriented untreated clay specimens ($<$ 1 μ)	90
9	X-ray diffraction patterns of oriented ethylene glycol-treated clay specimens (< 1 \mu)	90
10	X-ray diffraction patterns of oriented heated (550°C) clay specimens (< 1 \n)	90
11	Differential thermal curves (700°C) of clay specimens from Abou-Said and Giza ($<$ 1 μ) .	91
12	Differential thermal curves (1113°C) of clay specimens from Abou-Said and Giza ($<$ 1 μ).	91

LIST OF FIGURES (Cont.)

Fig.	Title	Page No.
13	Electron micrograph of large flakes of smectite next to kandite and hydrous mica of $<$ 1 μ fraction from surface sample of Abou-Said profile. 30,000 X	91
14	Electron micrograph of poorly defined outlines minerals, aggregates of smectite, and kendite of lau fraction of surface sample of Abou-Said profile. 60,000 X	91
15	Electron micrograph of badly crystallized kandite like-minerals, smectite flakes and finer material in aggregates of law fraction of 60-80 cm depth of Giza profile. 30,000 X	91
16	Electron micrograph of badly crystallized kaolinite next to halloysite, smectite likeminerals and hydrous mica of < 1 u fraction from 60-80 cm depth of Giza profile. 30,000 X	91
17	Electron micrograph of elongate tubular crystals of halloysite of <1 u fraction from 60-80 cm depth of Giza profile. 60,000 X	91
18	Ca-deficiency symptoms in young leaves of wheat grown in cultural solution at 1:64 Ca:Mg ratio	101
1 9	A newly deformed and rolled-up ear of wheat grown in Ca dificient solution	101
20	Root systems of wheat grown in 10 meq/L nutrients solution at varying Ca:Mg ratio a) root systems in 64:1, 16:1; 4:1 and 1:1 rati b) root systems in 1:1, 1:4, 1:16 and 1:64	os 101

LIST OF FIGURE (Cont.)

Fig.	Title	Page No.
21	Root systems of wheat grown in Ca-deficient solutions (10 and 40 meq/l salt concentrations)	102
22	Wheat grown in 64:1, 16:1 and 4:1 Ca:Mg ratios at low and high salt concentrations (10 and 40 meq/L)	102
23	Wheat grown in 1:4, 1:16 and 1:64 Ca:Mg ratios at low and high salt concentrations (10 and 40 meq/L)	102
24	Wheat grown in 4:1, 1:1, and 1:4 Ca:Mg ratios at low and high salt concentrations. (10 and 40 meq/L)	102
25	Wheat growth at varying Ca:Mg ratio at low salt concentration (10 meq/L)	102
26	Wheat growth at varying Ca:Mg ratio at high salt concentration (40 meq/L) \dots	102
27	Dry matter (g/10 plants) of lst and 2nd harvests plant parts	103
28	Number of tillers, grains and new tillers/10 plants	104
29	Nutrients uptake (meq/10 plants) for roots and tops of lst harvest, and tops of 2nd harvest.	108
30	The relationship between total uptake of tops (meq/10 plants) and yield (gram/10 plants) of lst harvest	110
31	The relationship between total uptake of tops (meq/10 plants) and yield (gram/10 plants) of 2nd harvest	110

LIST OF FIGURES (Cont.)

Fig.	Ti tle	Page No.
32	Nutrients content (meq/kg dry matter) for roots and tops of lst harvest and tops of 2nd harvest	115
33	Nutrients content (meq/kg dry matter) of 2nd harvest's plant parts	121
34	Nutrients uptake (meq/10 plants) of 2nd harvest's plant parts	1 24
35	(C-A) in meq/kg dry matter for lst and 2nd top harvests	125
36	The relationship between logarithms of Ca:Mg ratios in nutrient solutions and in plants (lst and 2nd harvests)	127
3 7	Dry matter (g/10 plants) of plant's tops grown in soil culture	129
38	Nutrients uptake (meq/10 plants) by tops of plants grown in soil culture	131
39	The relationship between total uptake (meq/10 plants) and yield (g/10 plants) for tops of plants grown in soil culture	132
40	Nutrients content and (C - A) in meq/kg in tops of plants grown in soil culture	133