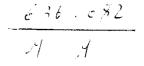

MODELING TO DETERMINE POSSIBLE PROBLEMS IN APPLICATION OF THE ANIMAL MODEL IN DAIRY CATTLE

Ву



MANAL MOHAMAD AHMED SAYED

B.Sc. Agric. Sci. (Animal Production),
Ain Shams University, 1985
M.Sc. (Animal Breeding)
Ain Shams University, 1989

A thesis submitted in partial fulfillment of the requirement for the degree of

55680

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Animal Breeding)

Department of Animal Production Faculty of Agriculture Ain Shams University

1997

APPROVAL SHEET

MODELING TO DETERMINE POSSIBLE PROBLEMS IN APPLICATION OF THE ANIMAL MODEL IN DAIRY CATTLE

Ву

MANAL MOHAMAD AHMED SAYED

B.Sc. Agric. Sci. (Animal Production),Ain Shams University, 1985M.Sc. (Animal Breeding)Ain Shams University, 1989

This thesis for Ph.D. degree has been approved by:

Prof. of Animal Breeding, Faculty of Agriculture
Al-Zagazig University

Prof. Dr. Hussein M. Mansour

Prof. of Animal Breeding. Faculty of Agriculture

Ain Shams University.

Date of examination: 27/9 / 1997

ACKNOWLEDGEMENTS

First and foremost, all praises are due to Allah, who blessed me with good advisors and friends.

I owe my advisor, Dr. Hussein Mansour, Professor of Animal Breeding, Ain Shams University a great deal. Through his sincere efforts, it has been possible to obtain the programs, used in this study. Dr. Mansour proposed the work plan and guided the study. Special word of thankfulness is due to him for his constructive criticism and his everyday readiness to help in overcoming problems during the analysis and writing this thesis. Through his endless ability to give and his patience and the friendly atmosphere he secures for his students I learned a lot.

Appreciation and special thanks is extended to Prof. Dr. Esam El-Tawel, Professor of Animal Breeding, Ain Shams University for his aid, optimism and understanding through my study.

My deepest gratitude are deserved to Dr. E. Salah E. Galal, Professor of Animal Breeding, Ain Shams University. He taught me a lot through my study and extended my understanding of my scientific career. Dr. Galal proposed the topic of this study.

Special thanks are to my mother and my father, who teach me the worth of science, give encouragement and in their eyes I can read my success. All my love to my brothers and my sisters and their sons who provide me with confidence, encouragement, support and patience at time needed. I like to express my sincere thanks to my brother Dr. Hamdy Elsayed, who always encouraged me and deposited the confidence in me to reach this point in my life.

This thesis would have never been accomplished without the kindly help of my close friend, Miss Reda Elsaid a member of the Scientific computation unit. I like to express my special thanks to her.

I like to express my sincere appreciation to scientific computation unit members. My friend Nafisa Abdel-Karim who ever stands by me and miss Zeinab Abou Benaia for their great help

This thesis is dedicated with all my love to the only person in the world that I wish to see him better than me, my kid Abd El-Rahman. Nothing could satisfy my feeling toward his lovely smile which stand by me at time needed.

MODELING TO DETERMINE POSSIBLE PROBLEMS IN APPLICATION OF THE ANIMAL MODEL IN DAIRY CATTLE

Ву

MANAL MOHAMAD AHMED SAYED

B.Sc. Agric. Sci. (Animal Production),
Ain Shams University, 1985
M.Sc. (Animal Breeding)
Ain Shams University, 1989

Under the supervision of:

Prof. Dr. H. M. Mansour

Prof. of Animal Breeding, Fac. of Agric., Ain Shams Univ.

Prof. Dr. E. A. El-Tawil

Prof. of Animal Breeding, Fac. of Agric., Ain Shams Univ.

ABSTRACT

MANAL MOHAMMAD AHMAD SAYED. Modeling to determine possible problems in application of the animal model in dairy cattle. Unpublished Ph.D., University of Ain Shams, Faculty of Agriculture, Department of Animal Production, 1997.

This thesis was directed to study three problems arise when analyzing animal breeding data for estimating variance components and / or predicting breeding values.

In chapter 1, the effect of different degrees of disconnectedness (50 levels) on estimating variance components was investigated by generating three populations depending on the value of heritability (0.1, 0.25 and 0.4). It was noticed that mean squared errors did not change noticeably by changing the degree of connectedness. Whereas there was a slight decrease in bias by increasing the degree of connectedness.

In chapter 2, the relevance of predicting the breeding value of a trait analyzed as multiple traits versus the prediction using a single trait analysis specially in case of missing values was studied. Results of this chapter indicated that bias was lower when the trait was analyzed by multiple traits analysis than when analyzed using a single trait analysis for the estimation of variance component and for the prediction of breeding values.

Chapter 3, concerned with studying the effect of correction for fixed effect on estimating variance components by four different models. Results indicated that mixed model is the best model to yield constants for correcting fixed effects whereas cow model is the best model for estimating variance components.

Key words: simulation, dairy cattle, disconnectedness, single trait, multiple traits, environmental adjustments, variance components, breeding values, modeling and animal model.

TABLE OF CONTENTS

	PAGE
1.Introduction	1
2. Review of Literature	3
2.1. The history and importance of simulation procedures	3
2.1.1. The simulation of random number generators	3
2.2. The mean squared error	4
2.3. Disconnectedness	4
2.4. The Importance of Using Multitrait Analysis	7
2.5. Correction for fixed effects	10
2.5.1. Correction for age	12
2.5.2. Correction for parity and year of calving	14
2.6. The best model to be used for estimating variance	
components	15
3- Material and Methods	17
3.1. Disconnectedness	17
3.1.1. Simulation Procedure	17
3.1.2. The Structure of Complete Disconnected Data	17
3.1.3. The structure of connected data	18
3.1.4. Statistical Analysis	20
3.2. Single and Multiple Traits	22
3.2.1. Simulation Procedure	22
3.2.2. Statistical Analysis	23
3.3. Correction for fixed effects	25
3.3.1.Simulation Procedure	25
3.3.2. Statistical Analysis	26
3.3.2.1. Correction for fixed effects	26
3.3.2.2. Computing Variance Components	28
4. Results and Discussion	31
4.1 Disconnectedness	24

	Page
4.1.1. Heritability, Genetic and Environmental	
Variances	31
4.1.2 Bias, variance and mean Squared Errors (MSE)	
of Heritability, Genetic and Environmental	
Variances	31
4.2. Type of analysis	57
4.2.1. Bias, variance and mean squared errors of	
breeding values	57
4.2.2. Bias, variance and Mean Squared Errors of	
Heritability, Genetic and Environmental	
Variances	59
4.3. Correction for Fixed Effects	63
4.3.1. Bias, Variance and Mean Squared Errors of Age	
Constants	63
4.3.2. Bias, Variance and Mean Squared Errors for the	
First Three Parities	66
4.3.3. Bias, Variance and Mean Squared Errors of Years	69
4.3.4. Bias, Variance and Mean Squared Errors for Genetic,	
Environmental Variances and Heritability	79
5- Summary and Conclusions	86
6- References	92
7- Arabic Summary	

LIST OF TABLES

Tables	PAGE
1. The assumed parametric values for phenotypic, genetic,	
residual variances and heritabilities values for the three	
studied populations	20
2. Average values of the ten samples for the estimates of	
genetic and environmental variances and heritability	32
3. Bias of genetic variances (σ_a^2) for the three simulated	
populations	34
4. Bias of environmental variances (σ_e^2) for the three	
simulated populations	36
5. Bias of heritability (h²) for the three simulated populations	38
6. Variances of genetic variance estimates for the three	
simulated populations	40
7. Variances of environmental variance estimates for the	
three simulated populations	42
8. Variances of heritability estimates for the three simulated	
populations	44
9. Mean squared errors for genetic variances for the three	
simulated populations	46
10. Mean squared errors of environmental variances for the	
three simulated populations	48
11. Mean squared errors of heritability for the three simulated	
populations	50
12. Analysis of variance of bias for genetic (Bias of σ_a^2),	
environmental (Bias of σ^2_{e}) variances and heritability	
(Bias of h²)	52
13. Analysis of variance of mean squared errors for genetic	
(σ_a^2) , environmental (σ_e^2) variances and heritability (h^2)	53
14. Analysis of variance for genetic (σ_a^2) , environmental (σ_e^2)	
variances and heritability (h²) variances	53

Tal	bles	PAGE
15.	Bias, variance and mean squared errors for breeding	
	values of fat yield under single and multiple traits	
	analysis	58
16	Analysis of variance of bias, mean squared errors and	
	variances for breeding values of fat yield	59
17.	Bias for estimates of genetic (σ_a^2) , environmental (σ_e^2)	
	variances and heritability (h²) of fat yield under single and	
	multiple traits analysis	60
18.	Variances for estimates of genetic (σ_a^{-2}) , environmental (σ_e^{-2})	
	variances and heritability (h2) of fat yield under single and	
	multiple traits analysis	60
19.	Mean squared errors for estimates of genetic (σ_a^{-2}) ,	
	environmental (σ_e^2) variances and heritability (h^2) of fat	
	yield under single and multiple traits analysis	61
20.	Analysis of variance of bias, variance and mean squared	
	errors for heritability (h²)	62
21.	Analysis of variance of bias, variance and mean squared	
	errors for genetic variance (σ^2_a)	62
22.	Analysis of variance of bias, variance and mean squared	
	errors for environmental variances (σ^2_e)	63
23	. Bias for age at calving in different models for the first	
	three parities	64
24	. Variance for age at calving in different models for the first	
	three parities	64
25	Mean squared errors for age at calving in different models	
	for the first three parities	65
26		66
27	Variance for the first three parities at four different models	67
	Mean squared errors for the first three parities at four	
	different models	67
29	Bias for twenty years at four different models	70

Tables	PAGE
30. Variance for twenty years at four different models	71
31. Mean squared errors for twenty years at four different	72
models	
32. Analysis of variance of bias, variance and mean squared	
errors for age constants	77
33. Analysis of variance of bias, variance and mean squared	
errors for parity constants	78
34. Analysis of variance of bias, variance and mean squared	
errors for years constants	79
35. Bias for genetic variance (σ_a^2), environmental variance (σ_e^2)	
and heritability (h²) at four different models	80
36. Variance for estimates of genetic variance (σ^2_a) ,	
environmental variance $(\sigma^2_{\ e})$ and heritability (h^2)	
at four different models	80
37. Mean squared errors (MSE) for genetic variance (σ_a^2),	
environmental variance $(\sigma^2_{\ e})$ and heritability (h^2)	
at four different models	80
38. Analysis of variance of bias, variance and mean squared	
errors for genetic variance (σ^2_a)	85
39. Analysis of variance of bias, variance and mean squared	
errors for environmental variance (σ_e^2)	85
40. Analysis of variance of bias, variance and mean squared	
errors for heritability (h²)	85

LIST OF FIGURES

Figure		PAGE
1	Example for a complete disconnected structure of data	
	consists of two connected sub sets	18
2-	Example for a completely connected data set	19
3-	The relationship between the degree of connectedness and	
	bias at $h^2 = 0.1$ for heritability, genetic variance and residual.	
	respectively	54
4-	The relationship between the degree of connectedness and	
	bias at $h^2 = 0.25$ for heritability, genetic variance and	
	residual, respectively	55
5-	The relationship between the degree of connectedness and	
	bias at $h^2 = 0.4$ for heritability, genetic variance and residual,	
	respectively	56
6-	Bias of age at the first three parities at four different models	65
7-	Bias of the first three parities at four different models	68
8-	Bias of the year 1 to year 5 at four different models	73
9-	Bias of the year 6 to year 10 at four different models	74
10-	Bias of the year 11 to year 15 at four different models	75
11-	Bias of the year 16 to year 20 at four different models	76
12-	Bias of the genetic variance at four different models	81
13-	Bias of the environmental variance at four different models	82
14-	Bias of the heritability at four different models	83

List of Abbreviations

GLM general linear model VAR. COMP. variance component

SAS statistical analysis system
PEV predicted error variance

BV's breeding values

BLUP best linear unbiased predictors

yr year

R² coefficient of determination

h² heritability

 σ_a^2 genetic variance

 $\sigma^{2}_{\ e}$ environmental variance $\sigma^{2}_{\ p}$ phenotypic variance MSE mean squared errors

DC degree of connectedness

LSMLMW least square maximum likelihood

mean weighted

MTDFREML multiple traits derivative free

restricted maximum likelihood

kg kilogram

