ROLE OF SOIL AMENDMENTS IN A VIRGIN DESERT SOIL AND THEIR EFFECT ON PLANT NUTRITION

BY

GAMAL GHONEIM SALM BEHAIRY

A thesis submitted in partial fullfillment

of the requirement for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science

(Soil Science)

Departmet of Soil Science Faculty of Agriculutre Ain Shams University

1993

APPROVAL SHEET

ROLE OF SOIL AMEDMENTS IN A VIRGIN DESERT SOIL AND THEIR EFFECT ON PLANT NUTRITION

Ву

GAMAL GHONEIM SALEM BEHAIRY

B.Sc. in Soil Sci., Fac. of Agric., Zagazig Univ. 1978

M.Sc. in Soil Sci., Fac. of Agric., Ain Shams Univ., 1989

This thesis for Ph.D. degree has been approved by:

Prof. Dr. F.M. Abed
Prof. of Soil Science,
Faculty of Agriculture,
Al Azhar University

MAbed

Prof. Dr. M. Talha El-Maghrabi Prof. of Soil Science, Faculty of Agriculture, Ain Shams University Talha

Prof. Dr. S.M. El-Sherif Prof. of Soil Science, Faculty of Agriculture, Ain Shams University

(Committe in charge)

Date of examination / 1993

ROLE OF SOIL AMENDMENTS IN A VIRGIN DESERT SOIL AND THEIR EFFECT ON PLANT NURITION

BY

GAMAL GHONEIM SALEM BEHAIRY B.Sc. in Soil Sci. Fac. of Agric., Zagazig Univ., 1978 M.Sc. in Soil Sci., Fac.of Agric. Ain Shams Univ.. 1989

Under the supervision of:

Prof. Dr. S.M. El-Sherif Prof. of Soil Sci., Ain Shams Univ.

Prof. Dr. I.H.M. El-Bagouri Prof. of Soil Sci., Desert Res. Center

Dr. T.A. Taha Associate Prof. of Soil Sci., Ain Shams Univ.

ABSTRACT

An investigation to study the effects of application of natural and synthetic amendments on the rate of change in the main properties of a virgin calcareous soils under the conditions and interactions with four successive crops. Significant rates of improvement of the soil properties were determined with superiority of most of the natural amendments over the synthetic ones.

Key Words:

Natural and synthetic amendments - Rate of soil development - Calcareous desert soil - Crop succession - Organic matter - CEC - Soil Aggregates - Nutrients availability.

ACKNOWLEDGEMENT

The author wishes to express his sincerest gratitude and appreciation to Prof. Dr. S.M. El-Sherif, Professor, Soils Department, Faculty of Agriculture, Ain Shams University for his supervision, continued guidance, encouragement, and valuable help in accomplishing this work.

The author is also indebted to Prof. Dr. I.H. El-Bagouri, Professor, Head of Department of Soil and Water Conservation, Desert Research center, for his supervision, constant guidance advice and interest throughout the whole stage of this investigation and guidance in proportion of the manuscript.

The author wishes also to express his sincere gratitude to Dr. T.A. Taha, Associate Professor of Soils, Soils Department, faculty of Agriculture, Ain Shams University, for his supervision, valuable guidance and help in accomplishing this work.

Thanks are forwarded to all staff members of the Department of Soil and Water Conservation, Desert Research Center for their help and cooperation during this work.

CONTENTS

A	Pag
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. The need for Soil Conditioners	3
2.2. Role of Soil Conditioners	4
2.2.1. Effects on soil chemical properties .	4
a) Effect on soil organic matter	4
b) Effects on cation exchange	•
capacity (CEC)	9
2.2.2. Efefcts on soil physical properties	12
a) Bulk density	12
b) Effect on soil aggregates	15
c) Porosity and pre-size distribution	23
d) Water retention	
2.2.3. Effect of nutritional properties of the	27
a) Effect on availability and water	33
and uptake	
of macronutrientsb) Effect on availability and water	33
and uptake	
of micronurients	45
2.2.4. Effect of conditioners on plant growth	
and yield	53
a) Effects on seed germination	53
b) Effects on plant growth	56
3. MATERIALS AND METHODS	65
3.1. Soil Sampling	65
3.2. Experimental Design	· -
3.3. Applied treatments	66

CONTENTS (Cont'd.)

	Page
3.4. Cultivation seasons	69
3.4.1. First season	69
3.4.2. Second season	70
3.4.3. Third season	71
3.4.4. Fourth season	72
3.5. Soil and Plant Analysis	73
3.5.1. Soil analysis	73
3.5.2. Plant analysis	74
A DECLITE AND DECLICATION	
4. RESULTS AND DISCUSSION	75
4.1. Effect on Soil Organic Matter Content	75
4.2. Effect on Cation Exchange Capacity (CEC)	81
4.3. Effect on Stable Soil Aggregates	87
4.4. Effect on Soil Macronutrients	92
4.4.1. Effect on soil nitrogen	92
4.4.2. Effect on soil available phosphorus	97
4.4.3. Effect on soil extractable soil	
· · · · · ·	02
·	07
-	07
···	12
	16
	20
4.6. Effects of Treatments and Yield and Nutrients	
	24
- · · · · · · · · · · · · · · · · · · ·	24
4.6.1.1. Crop yield	24

CONTENTS (Cont'd.)

Page

4.6.1.2. Macronutrients concentration
and total uptake in wheat
grains 12
4.6.1.3. Micronutrients concentration
and total uptake in wheat
grains 12
4.6.2. Response of peas $(3ed crop) \dots 13$
4.6.2.1. Response of peas yield 13
4.6.2.2. Macronutrients concentration
in peas and total uptake 133
4.6.2.3. Micronutrients concentration
in peas and total uptake 138
4.6.3. Response of two sorghum crops (2nd and
4 <u>th</u>) 141
4.6.3.1. Response of sorghum yield 142
4.6.3.2. Macronutrients concentration
and total uptake in two sorghum
crops 144
4.6.3.3. Micronutrients concentration
and total uptake in two
sorghum crops 151
- CONCLUSIONS 160
5. SUMMARY 165
6. REFERENCES 170
ARABIC SUMMARY.

LIST OF TABLES

Table No.		Page
1	Initial physical and chemical properties of the investigated soil	67
2	Major chemical properties of the natural conditioners under investigation	68
3	Effect of treatments on soil organic matter content of surface and subsurface layers through 4 seasons	77
4	Effect of treatments on soil CEC of surface and subsurface soil layers through 4 seasons (meq/100 g soil)	82
5	Effect of treatments on soil total nitrogen in the surface and subsurface soil layers through 4 seasons (mg/g)	93
6	Effect of treatments on soil available P in the surface and subsurface soil layers through 4 seasons (ppm)	99
7	Effect of treatments on soil extractable K in the surface and subsurface soil layers through 4 seasons (meq/100 g soil)	103
8	Effect of treatments on soil available Fe in the surface and subsurface soil layers through 4 seasons (ppm)	.08
9	Effect of treatments on soil available Mn in the surface and subsurface soil layers through 4 seasons (ppm)	13

LIST OF TABLES (Cont'd.)

Table No.		Page
10	Effect of treatments on soil available Zn in the surface and subsurface soil layers through 4 seasons (ppm)	117
11	Effect of treatments on soil available Coppering the surface and subsurface soil layers through 4 seasons (ppm)	r 121
12	Effect of treatments on the yield of four successive crops, g dry wet/experimental unit	125
13	NPK concentration in wheat grains 1 <u>st</u> cropmg/g	128
14	Total uptake of NPK in wehat grains mg/exp.	128
15	Micronutrients concentration in wheat grains 1st crop (ppm)	130
16	Total uptake of micronutrients by wheat grains mg/ex. unit	130
17	NPK concentration in peas crop (rd crop) mg/g	135
18	Total uptake of NPK in the vegetative part of peas mg/exp. unit	135
19	Micronutrients concentration in peas crops 3rd crop (ppm)	139
20	Total uptake of micronutrients in the vegetative part peas mg/exp. unit	139

LIST OF TABLES (Cont'd.)

Table No.		Page
21	Effect of treatements on macronutrients concentration of sorghum in two seasons mg/g)	145
22	Total uptake of NPK of sorghum in two seasons (mg/ex. unit)	145
23	Effect of treatmetns on micronutrients concentration of sorghum in two seasons (ppm)	152
24	total uptake of micronutrients of sorghum in two seasons (mg/exp. unit)	152

LIST OF FIGURES

Figure No.		Page
1	Effect of soil amendments on soil organic matter content through four cropping seasons	78
		, ,
2	Effect of soil amendments on cation exchange capacity after second and fourth seasons	83
3	Effect of treatments on stable aggregate percentage in the surface layer after two and four cropping seasons	88
4	Effect of soil amendments on soil stable aggregates after A- two seasons and B- four seasons	90
5	Effect of soil amendments on total soil nitrogen through four cropping seasons	94
6	Effect of soil amendments on available soil phosphours through four cropping seasons	.00
7	Effect of soil amendments on NH ₄ -acetate extractable soil potassium through four cropping seasons	04
8	Effect of soil amendments on available iron through four cropping seasons 1	09
9	Effect of soil amendments on available soil manganese through four cropping seasons	14
10	No.	
10	Effect of soil amendments on available soil zinc through four cropping seasons	1.0

LIST OF FIGURES (Cont'd.)

Figure No.		Page
11	Effect of soil amendments on available soil copper through four cropping seasons.	122
12	Effect of treatments on wheat grain yield (1st crop)	126
13	Effect of treatments on peas yield (3rd crop)	134
14	Effect of treatments on sorghum yield in the (2nd and 4th corps)	143

1. INTRODUCTION

One of the major concern of reclamation of desert soils in Egypt is how to enhance the rate of improvement of the soil's inferior physical, chemical and nutritional properties in order to achieve maximum economic returns in the shortest possible time. Thus, with the beginning of large scale desert soil reclamation in Egypt in the sixties and seventies, the use of soil amendments of various types and sources received an ever increasing interest.

Investigations were conducted on the role of natural amendments such as organic matter of various origins, natural desert clay sediments and petroleum products. lately, synthetic soil conditioners with varied properties and functions came into focus. Soil conditioners vary in their effects and impact on soil properties according to their chemical composition and function. Despite the fact that there are numerous investigations that have been conducted on the use of such conditioners, however, the greater majority of these investigations were conducted for a short duration of one cropping season whether in pots or field experiments. The results of these

investigations would not allow for long term assessments of impact on soil properties, residual effects of amendments, effects on processes of nutrients accumulation or depletion, interaction with crops succession and achieving data that are appropriate for economic evaluations.

The objective of the present investigation is to study the effects of application of six natural and synthetic soil amendments, with varied properties, on the rate of change of the main properties of a virgin calcareous desert soil. Amendments under investigation were natural bentonite, organic manure of animal orgin, poudrette, polyacrylamide, hydrogel and bitumen emulsion. The impact of these soil amendments under investigation were studied through four successive cultivation seasons including a test crop which was repeated within the duration of the present investigation to assess the rate of improvement of soil productivity, crop yield and nutrients content as a function of treatments and crop succession in four seasons.