EFFECT OF FEEDING SOME BY-PRODUCTS ON THE PERFORMANCE OF DAIRY BUFFALO

Ву

YAHYA ABD EL-HALEEM ABD EL-RAHMAN MAARECK

B.Sc. Agric. (Animal production) Ain Shams Univ., 1979 M.Sc. Agric. (Animal Nutrition) Ain Shams Univ. 1990

A thesis submitted in partial fulfillment of the requirements for the degree of

The state of the s

DOCTOR OF PHILOSOPHY

in

Agriculture Science (Animal Nutrition)

72783

Department of Animal Production Faculty of Agriculture Ain Shams University

The same

1997

APPROVAL SHRET

EFFECT OF FEEDING SOME BY-PRODUCTS ON THE PERFORMANCE OF DAIRY BUFFALO

37

YAHYA ABD EL-HALEEM ABD EL-RAHMAN MAARECK

B.Sc. Agric. (Animal production) Ain Shams Univ. 1979 M.Sc. Agric., (Animal autrition) Ain Shams Univ., 1990

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Sabbah M. Altam

Prof. of Animal Nutrition, Fac. Agric. Cairo Univ.

Prof. Dr. H.S. Soliman

Prof. of Animal Nutrition, Fac. Agric., Ain Shams Univ.

Prof. Dr. M. A. El-Ashry

Prof. of Animal Nutrition & Chairman of Animal Prod. Dept., Fac. Agric.,

Ain Shams Univ. (Supervisor)

Date of examination 13/4/1997.

EFFECT OF FEEDING SOME BY-PRODUCTS ON THE PERFORMANCE OF DAIRY BUFFALO

By

YAHYA ABD EL-HALEEM ABD EL-RAHMAN MAARECK

B.Sc. Agric. (Animal Production) Ain Shams Univ., 1979 M.Sc. Agric. (Animal Nutrition) Ain Shams Univ., 1990

Under the Supervision of:

Prof. Dr. M.A. El-Ashry

Professor of Animal Nutrition & Chairman of Animal Prod. Dept., Fac. of Agric., Ain Shams University.

Prof. Dr. Z. M. Abd El-Motagally

Professor of Animal and Poultry Nutrition, National Research Centre

ACKNOWLEGMENT

I wish to express my deepest thanks and gratitude to Dr. Mohamed A. El-Ashry, Professor of Animal Nutrition and Head of Animal Production Department. Faculty of Agriculture, Ain Shams. University for his continuous supervision support and contructive guidance comments through the whole course of this work.

Deep thanks and gratitude for Dr. Zeba M.Z. Abd El-Motagally, Professor of Animal and Poultry Nutrition, Animal and Poultry Nutrition and Production Department, National Research Centre, for her continuous supervision helps and guidance through the whole course of this work.

I like to express my deep thanks and gratitude to My Dear wife Dr. Laila D. Abd El-Samee, Researcher, Animal and Poultry Nutrition and Production Department, National Research Centre, for her great helps.

ABSTRACT

Yahya Abd-El-Haleem Abd El-Rahman Maareck Effect of feeding some byproducts on the performance of dairy buffalo-unpublished, Ph.D. of Science, University of Ain Shams, Faculty of Agriculture, Department of Animal Production, 1997.

An experiment was conducted to investigate the effect of replacing pelleted concentrate feed mixture of buffaloes rations by dried sugar beet pulp at 0, 25 and 50% level on productive performance. Eighteen lactating buffaloes were used in this study, which were divided into 3 similar groups. Then these groups were assigned randomly to one of three dietary treatments. Animals were introduced to treatments starting one week before the expected calving date and continued till the day 180 of lactation season. Total protein, albumin, globulin, A/G ratio, urea, GOT and GPT were determined in blood serum.

The effect of the nutritional treatments on milk yield, milk composition, colostrum compsition, feed efficiency as DM, SV to milk and reproductive performance were studied. The results could be summaryzed as the following:

- 1- There were no significant differences among treatments concerning average daily milk yield and daily fat-corrected-milk (4%) yield.
- 2- There were no significant differences among treatments concerning gross energy of colostrum on different days studied.
- 3- The group fed on 50% level of dried sugar beet pulp showed milk with highest value of gross energy followed by the group fed on 25% level of dried sugar beet pulp and finally the control. Differences among treatments were significant (P<0.05).
- 4- There were no significant differences among treatments concerning dry matter, starch value and net starch value rate of conversions to milk.
- 5- There were no significant differences among treatments concerning total solids, fat, solids-not-fat, total protein, ash and lactose contents of colostrum.

- 6- The group fed on 50% level of dried sugar beet pulp showed the highest value of milk total solids content followed by the group fed on 25% level of dried sugar beet pulp and finally the control. These differences were significant (P<0.05).
- 7- There was no significant difference between the two groups fed on dried sugar beet pulp concerning fat content of milk which both were higher significantly than the control.
- 8- There were no significant differences among treatments in solids-not-fat and lactose contents of milk.
- 9- Total protein content of milk was close for the two groups fed on dried sugar beet pulp but both groups were higher significantly than the control.
- 10- Ash content of milk of the group fed on 50% level of dried sugar beet pulp was lower significantly than those of the group fed on 25% level of dried sugar beet pulp and the control.
- 11- There were no significant differences among treatments concerning daily yields of milk fat, protein and lactose. The groups fed on dried sugar beet pulp showed lower milk ash yield than that of the control.
- 12- There were no significant differences among treatments concerning calving interval and days at first estrus after parturition. The groups fed on dried sugar beet pulp showed significantly lower values of services per conception compared with the control.
- 13- Total protein, albumin, globulin, A/G ratio, urea, GOT and GPT of blood serum of this study were within the normal ranges reported for buffaloes.

Key words: Beet pulp, Lactating, Buffalo, Milk, Yield, Composition, Ration, Feed efficiency.

CONTENTS

	Page
I- INTRODUCTION	1
II- REVIEW OF LITERATURE	2
1- Nutrient composition of sugar beet pulp.	2
2- Effect of feeding dairy cattle on sugar beet pulp	_
a- Productive performance	_
1 - Colostrum	2
2- Milk	3
b- Reproductive performance	
c- Biochemical constituents of blood	5 5
3- Effect of parity	•
a- Productive performance	6
b- Reproductive performance	6
4- Effect of dietary NDF level on productive performance	6
III- MATERIALS AND METHODS	7
l- Animals	9
2- Rations	9
3- Feeding and management	9
4- Colostrum and milk sampling	13
5- Analytical methods	13
a- Colostrum and milk	14
b- Feed stuffs	14
6- Blood sampling	15
7- Methods of determination of some biochemical parameters of	15
blood serum	15
8- Calculations of feed conversion	16
9- Reproductive traits	17
10- Statistical analysis	17
IV- RESULTS AND DISCUSSION	19
I- Average milk yield	19

	Page
2- Fat-corrected-milk (4%) yield	. 19
3- Gross energy	24
a- Colostrum	24
b- Milk	27
4- Gross dry matter conversion	30
5- Gross starch value conversion	30
6- Net starch value conversion	35
7- Chemical composition	38
a- Colostrum	38
1- Total solids	38
2- Fat	38
3- Solids-not-fat	43
4- Total protein	43
5- Ash	48
6- Lactose	48
b- Milk	53
1- Total solids	53
2- Fat	56
3- Solids-not-fat	59
4- Total protein	59
5- Ash	64
6- Lactose	64
8- Yields of milk components	69
a- Fat	69
b- Total protein	69
c- Ash	74
d- Lactose	77
9- Reproductive performance	77
10- Biochemical parameters of blood serum	77
a- Total protein	77

	Page
b- Albumin	83
c- Globulin	83
d- A G ratio	88
e- Urea	88
f- GOT	88
g- GPT	
V- SUMMARY AND CONCLUSIONS	
VI- REFERENCES	-
VII- APPENDIX TABLES	
VIII- ARABIC SUMMARY	

List of Tables

No.		Page
Table (1)	Composition of the experimental concentrates	10
Table (2)	Percentages of the different ingredients of the experimental	
	rations (DM basis)	11
Table (3)	Nutrient composition of rations ingredients as well as the whole	
	experimental rations	12
Table (4).	Effect of replacing concentrate feed mixture of buffaloes'	
	rations by dried sugar beet pulp at different levels on average	
	milk yield (kg/day) at different periods	20
Table (5):	Effect of replacing concentrate feed mixture of buffaloes'	
	rations by dried sugar beet pulp at different levels on fat-	
	corrected-milk (4%) yield (kg/day) at different sampling days	22
Table (6):	Effect of replacing concentrate feed mixture of buffaloes'	
	rations by dried sugar beet pulp at different levels on gross	
	energy (Kcal/kg) of colostrum at different sampling postpartum	
	days	25
Table (7):	Effect of replacing concentrate feed mixture of buffaloes'	
	rations by dried sugar beet pulp at different levels on gross	
	energy (Kcal/kg) of milk at different sampling days	28
Table (8):	Effect of replacing concentrate feed mixture of buffaloes'	
	rations by dried sugar beet pulp at different levels on gross dry	
	matter conversion (Kg DM/kg milk) at different periods	31
Table (9):	Effect of replacing concentrate feed mixture of buffaloes'	
	rations by dried sugar beet pulp at different levels on gross	
	starch value conversion (Kg SV/kg milk) at different	
	periods	33
Table (10):	Effect of replacing concentrate feed mixture of buffaloes'	
	rations by dried sugar beet pulp at different levels on net starch	
	value conversion (Kg net SV/kg milk) at different periods	36

Table (30):	Effect of replacing concentrate feed mixture of buffaloes	
	rations by dried sugar beet pulp at different levels on globulin	
	concentration (gm/100 ml) at different sampling days of	
	lactation	86
Table (31):	Effect of replacing concentrate feed mixture of butfaloes'	
	rations by dried sugar beet pulp at different levels on A/G ratio	
	at different sampling days of lactation	89
Table (32):	Effect of replacing concentrate feed mixture of buffaloes'	
	rations by dried sugar beet pulp at different levels on serum	
	urea concentration (mg/100 ml) at different sampling days of	
	lactation	91
Table (33):	Effect of replacing concentrate feed mixture of buffaloes'	
	rations by dried sugar beet pulp at different levels on serum	
	GOT activity (units/ml) at different sampling days of lactation	93
Table (34):	Effect of replacing concentrate feed mixture of buffaloes'	
	rations by dried sugar beet pulp at different levels on serum GPT	
	activity (units/ml) at different sampling days of lactation	96

VIII

List of Figures

No.	Page
1- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on milk yield	21
2- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on FCM (4%) yield	23
3- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on gross energy of colostrum.	26
4- Effect of replacing concentrate feed mixture of buffaloes'	_
rations by dried sugar beet pulp on gross energy of milk	29
5- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on gross dry matter conversion.	32
6- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on gross starch value conversion.	34
7- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on net starch value conversion	37
8- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on total solids % of colostrum	40
9- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on fat % of colostrum	42
10- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on solids-not-fat % of colostrum.	45
11- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on total protein % of colostrum	47
12- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on ash % of colostrum	50

No.	Page
13- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on lactose % of colostrum	52
14- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on total solids % of milk	55
15- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on fat % of milk	58
16- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on solids-not-fat % of milk	61
17- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on total protein % of milk	63
18- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on ash % of milk	66
19- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on lactose % of milk	68
20- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on milk fat yield	71
21- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on milk total protein yield	73
22- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on milk ash yield	76
23- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on milk lactose yield	79
24- Effect of replacing concentrate feed mixture of buffaloes'	
rations by dried sugar beet pulp on serum total protein	82

nge
85
87
90
92
94
97