A CORRELATION BETWEEN FINE NEEDLI ASPIRATION CYTOLOGY, HISTOPATHOLOGE AND NUCLEAR DNA CONTENT IN TUMORS OF THE BREAST

THESIS SUBMITTED FOR PARTIAL FULFILLMENT OF M.D DEGREE IN

PATHOLOGY

BY

SOHEIR BASSIONI ABDEL NABY

(M.B,B.Ch - M.Sc.)

SUPERVISED BY

PROF. DR. ADLY FARID GHALY
PROF. OF PATHOLOGY
FACULTY OF MEDICINE – AIN SHAMS UNIVERSITY

PROF. DR. FAWZY NAGEEB GERGES
PROF. OF PATHOLOGY
FACULTY OF MEDICINE – AIN SHAMS UNIVERSITY

PROF. DR. RAGAA AHMED SALEM
PROF. OF PATHOLOGY
FACULTY OF MEDICINE – AIN SHAMS UNIVERSITY

DR. RAGAA AMIN FAWZY

ASS. PROF. OF PATHOLOGY

FACULTY OF MEDICINE -- AIN SHAMS UNIVERSITY

FACULTY OF MEDICINE — AIN SHAMS UNIVERSITY
1995

TO MY FAMILY

Acknowledgment

I feel much honored to express my deepest gratitude to **Professor Dr.**Adly Farid Ghaly, professor of pathology, Faculty of Medicine, Ain Shams University, for his suggestions, strict supervision, kind encouragement and useful valuable advises all through this work.

My great gratitude and heartful thanks must also be expressed to **Professor Dr. Fawzy Nageeb Gerges**, professor of pathology, Faculty of Medicine, Ain Shams University, who was too kind and helpful for me throughout his supervision.

I would like also to express my deep gratitude to **Professor Dr. Ragaa**Ahmed Salem, professor of pathology, Faculty of Medicine, Ain Shams

University, for offering me much of her time and for her great help and advice all through this work.

I would like to express my thanks to **Dr. Ragaa Amin Fawzy**, Assistant professor of pathology, Faculty of Medicine, Ain Shams University, for her help in this work.

I would like to express my heartful thanks to **Dr. Maged Abdel Karim El-setouhy**, lecturer of Community, environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University, for his great help, encouragement and support all through this work.

List of contents

Introduction
Aim of the study
Review of literature 4
Subjects, materials and methods
Results
Discussion
Summary and conclusion
References
Arabic summary

List of tables

Table (1M): Procedure of Feulgen staining88
Table (1): Age distributiob among 100 cases of breast swellings98
Table (2): FNA (fine needle aspiration) of 100 cases of breast swellings in relation to histopathologic diagnosis99
Table (3): Relation between FNA and histopathologic diagnosis in non-neoplastic swellings of breast
Table (4): Relation between FNA and histopathology in benign breast tumors
Table (5): Relation between FNA and histopathologic diagnosis in malignant breast101
Table (6): Results of histopathologic diagnosis and grading with comment on lymph nodes metastases and vascular invasion102
Table (7): Relation between histopathology and FNA in malignancy diagnosis
Table (8): Comparison between FNA cytology diagnosis of fifteen benign histopathologically confirmed breast tumors and DNA ploidy

(able (9) Comparison between diagnosis of 60 histopathologically confirmed malignant breast swellings with FNA and DNA ploidy. 104
Table (10): Comparison between diagnosis of 25 histopathologically confirmed non-neoplastic breast swellings with FNA and DNA ploidy
Table (11): Relation between DNA diagnosis and histopathological diagnosis in benign tumors and non-neoplastic lesions106
Table (12): Relation between DNA ploidy and histopathologic diagnosis of malignant cases (60)107
Table (13): Histopathologic grading in relation to DNA ploidy in 60 malignant breast swellings
Table (14): Comparison between histopathologic and DNA malignancy grading in malignant cases
Table (15): Relation of DNA ploidy with different age groups110
Table (16): Correlation between histopathologic grading and clinical staging of 60 malignant tumors
Table (17): Relation between histopathology and DNA ploidy in

List of graphs

Graph (1): Age distribution among 100 cases of breast swellings112
Graph (2): Distribution according to histopathologic diagnosis113
Graph (3): Histopathologic distribution of non-neoplastic cases114
Graph (4): Histopathologic distribution of malignant cases
Graph (5): Lymph node and vascular invasion(IDC)116
Graph (6): Lymph node invasion (ILC)117
Graph (7): Distribution according to histopathologic diagnosis and DNA ploidy118
Graph (8): Histopathologic and DNA malignancy grading in cases of aneuploid infiltrating duct carcinoma

List of figures

(Fig. 1R) Diagrammatic representation of normal breast 4
(Fig. 2R) DNA cytophotometric histogram types according to Auer et al., (1980)
(Fig. 3R) DNA FCM histogram types after Coulson et al., (1984)78
(Fig. 1M) Miamed DNA image analyzer89
(Fig. 1) Infiltrating lobular carcinoma. (Hx & E)
(Fig. 2) FNA cytology of lobular carcinoma.(Giemsa stain)120
(Fig. 3) Infiltrating duct carcinoma. (Hx & E)121
(Fig. 4) FNA cytology of duct carcinoma. (Feulgen stain)
(Fig. 5) FNA cytology of ductal carcinoma. (Papanicolou stain)122
(Fig. 6) FNA cytology of malignant cystosarcoma phylloides. (Papnicolou stain)
(Fig. 7) Fibroadenoma (Hx & E)
(Fig. 8) FNA cytology of fibroadenoma. (Papanicolou stain)123
(Fig. 9) Lobular hyperplasia. (Hx & E)
(Fig. 10) FNA cytology of fibrocystic disease. (Giemsa stain)124
(Fig. 11) Granulomatous mastitis. (Hx & E. X40)
(Fig. 12) Granulomatous mastitis. (Hx & E. X250)

List of histograms

DNA - Histogram (1). A case of duct hyperplasia showing aneuploid pattern, DNA - $MG = 1.0$
DNA - Histogram (2). A case of fibroadenoma showing low aneuploid pattern, DNA - $MG = 0.6$ 126
DNA - Histogram (3). A case of cystosarcoma phylloides showing highly aneuploid pattern, DNA - $MG = 2.5$
DNA - Histogram(4). A case of duct hyperplasia showing non-aneuploid (diploid) pattern127
DNA - Histogram (5). A case of fibroadenoma with fibrocystic disease showing a pattern suspicious for aneuploidy128

INTRODUCTION

Introduction

Lesions of the breast are confined to the female because of the more complex breast structure, the greater breast volume and extreme sensitivity to endocrine influences. Most diseases of the breast take the form of palpable painful nodules or masses (Robbins et al.,1994).

Breast cancer is a common problem that is destructive of women in their prime of life. Statistical reports from National Cancer Institute in Cairo show that breast cancer accounts for 34.8% of the total malignant diseases among Egyptian females (Ibrahim, 1984).

Fine needle aspiration of the breast is highly accurate, inexpensive, well tolerated by the patients and quick diagnostic method (Yolanda, 1978). The breast is one of the common sites for aspiration biopsy. The technique of breast aspiration is so simple, rapid and free of major complications (Kenneth, 1990).

Probable lesions of the breast are among the most accessible targets of aspirates that have been extensively used in various institutions for many years (Franzen and Zajicek, 1968; Rajdic, 1971 and Stavric et al, 1973).

The most obvious target of diagnostic aspirates is a clinically obvious, inoperable carcinoma of the breast to be treated by radiotherapy and hormonal manipulation (Mossler et al., 1982). Conventional subjective microscopical interpretations of tissue images allow in many cases a clear statements on benignity or malignancy of a tissue lesion. However, there is a group of lesions where subjective methods are not reliable to put a clear statement, this group is called border-line lesions.

Examination under microscope is considered to have the highest level of certainty in tumor diagnosis. Different grades of dysplasias only represent different probabilities that the respective change may develop into manifest cancer or may be already malignant, although the microscope images shows no evidence (Tavasoli, 1992).

Many recent investigations have demonstrated the diagnostic and prognostic validity of the DNA content in the breast cancer. During recent years DNA cytometry has frequently been used to characterize policy pattern and cell kinetics in breast cancer in relation to clinical and histopathologic parameters (Dowle et al., 1987).

AIMS OF THE STUDY