
A STUDY ON AN APPROPRIATE DESIGN FOR BUBBLER IRRIGATION SYSTEM

BY

AHMED MAHER EL LITHY

B.Sc. (Ag. Mech.) Ain Shams University, 1991

A thesis submitted in partial fulfillment of the requirements for the degree of

,7675

MASTER OF SCIENCE

in

AGRICULTURE

(AGRICULTURAL MECHANIZATION)

Department of Agricultural Mechanization

Faculty of Agriculture

Ain Shams University

1998

Approval Sheet

A STUDY ON AN APPROPRIATE DESIGN FOR BUBBLER IRRIGATION SYSTEM

BY

Ahmed Maher El-Lithy

B.Sc.(Agric.Mech.) Ain Shams University, 1991

This thesis for M. Sc. degree has been approved by:

Prof. Dr. A. I. Hashish A. Hashish
Prof. and Head of Ag. Eng. Dep., Zagazig Univ.

Prof. of Soils, Ain Shams Univ.

Prof. of Ag. Eng., Ain Shams Univ. (Supervisor)

Date of examination: 10 / 12 / 1997

ACKNOWLEDGMENT

The author wishes to thank "Allah" for allowing him to the completion of this work.

He wishes to express his greatest appreciation and deepest gratitude to his Principal Supervisor: **Prof. Dr. Mohamed Nabil El Awady**, Prof Emerit. of Agricultural Engingeering, Fac. of Agric., Ain Shams Univ., for suggesting this research, and also for kind guidance and encouragement.

He wishes also to express his deep gratitude to **Prof. Dr. Ahmed Farid El-Sahrigi** Prof. Ain Shams Univ. and consultant of Agricultural Engineering Research Institute (AEnRI), in addition to **Dr. Hassan A. Abdel Mawla** Head of Section; AEnRI, for their advices and continuous help to fulfill this work.

Special thanks are to be given to **Dr. Ibrahim Yehia El Sayed**, AEnRI, in addition to **Mr. Mohamed Tyssir El-Lithy, Mr. Haitham Nabih** and **Mr. Mohamed Nabih** for continuos help during laboratory and field tests.

Special thanks also to **Dr. Mohamed Montasser Ibrahim**, for his kind guidance and continuos encouragement.

Thanks to all who have helped, to complete this work.

ABSTRACT

Ahmed Maher El-Lithy. A study on an appropriate design for bubbler irrigation system. Unpublished Master of Science, University of Ain Shams, Faculty of Agriculture, Department of Agricultural Mechanization, 1997.

The aims of this study is to get the greatest lateral line length with the best uniformity distribution, through extending it into multi stages with different emitter sizes on each stages.

The main results in this study are summarized in the following:

I- Laboratory experiments.

(1) The effect of pressure head and tube diameter on discharge.

- The discharge of tube increased from "19.59" to " 74.35 L/h" by increasing pressure head from "0.025" to "1 bar" at tube diameter of "3 mm". The discharge increased from "27.97" to "54.07 L/h" by increasing tube -diameter from "3" to "4 mm" at pressure head of "0.25 bar".

(2) The effect of pressure and diameter of nozzle on discharge.

- The relationships between nozzle discharge (q) and pressure head (h) different nozzle-diameters were conducted in the following where k and x are constant. equation: q = khx

(3) The effect of pressure and type of screw emitter on discharge.

- The discharge of screw emitter decreased by increasing number of screw thread teeth and screw length into tube at all pressure heads. And the discharge increased by increasing pressure heads.

(4) The effect of valve-emitter angle on discharge.

- It was noticed that there was a wide variation of discharge trying to adjust valves as emitters in field. Thus this part of experiment was cancelled.

II- Field experiments.

- It was found that the lateral length (concerning pressure drop within 10 %) increased by increasing the nozzles spacings. The lateral lengths were "120", "150" and '168 m" at nozzles spacings of "4", "5" and "6 m" $\,$ respectively at pressure heads of "1 bar" and "1.4 bar".

(5) Extending the maximum allowable lateral length through multistaging with wider emitters downstream.

- It was notice that the discharge distribution along lateral-line is similar to saw teeth that indicate a good discharge-variation within 5 % along the lateral-line. The lateral length was thus extended by a number of times crossponding to the number of stages.

(6) The effect of nozzles spacing and pressure head on uniformity distribution.

- The uniformity coefficients were "98.24", "98.69", and "98.36 %" at nozzles spacings of "4", "5", and "6 m" respectively and pressure head of "1 bar". These data indicated that there was no remarked effect of nozzles spacings on uniformity- distribution.
- It was found that the uniformity coefficients were "98.24" and "97.68 %" at pressure heads of "1" and "1.4 bar" respectively and nozzle spacing of "4 m". These data indicate that there was no remarked effect of pressure head on uniformity of distribution.

(7) Economical view.

- As a result of using three stage of nozzle orifice-diameters along lateral than with using one nozzle oriface-diameter, save of "120.2 L.E." which is equivalent to "362%" was obtained at the same length and conditions

KEYWORDS: Bubbler - irrigation system - lateral line - nozzle - valve uniformity distribution - manufacturing coefficient of variation - pressure head - tube with screw -head loss.

Content

	Page
TITLE	1
II-NTRODUCTION	3
II-REVIEW OF LITERATURE	3
2-1 Definition of irrigation system	3
and line design	4
2.2.1 Hard losses in lateral line	6
2. 2. Paduction coefficient ("f" factor)	8
2 A Friction losses	9
2 5 Minor losses	10
2-6 Trickle irrigation-system	12
2. 7. Description of hubbler irrigation-system	-
2.7 1 Advantages and disadvantages of vaccion	14
imigation_system	•
2.2. Design of hubbler irrigation-system	
2.7.2 - Lateral line design of bubbler irrigiation	- :
= = 2 1 Delivery tube design	
2.7.2 Delivery tube elevation (bubblerriser)	
2.9 Coefficient of variation	
a a contract of uniformity	
TIL MATERIALES AND METHODES	20
2 1 Matarials	22
2.1.1 Types of outlets	23
2 1 1-a Tuhes	
2 1 1 h Nozzle	
2 1 1 a Imporated fittings	2 1
2 1 1 d Valve	2 '
2 1 2 Deman	2 '
2 1 2 Instruments for laboratory and field experiments	
3-1-3-a Pressure gage	29

3-1-3-b Piesometric tube	•
3-1-3-c Graduated cylinder, stop watch, and protractor	29
3-1-3-d Electronic digital caliper	
3-1-3-e Electrical drill and pincer	29
3-2 Methods.	29
3-2-1 Laboratory experiments.	32
3-2-1-1 Discharge	32
3-2-1-2 pressure	32
3-2-2 Field experiments.	32
3-2-2-1 Discharge uniformity	32
3-2-2-2 Pressure	32
3-2-2-3 Determination of the extend lateral -ength with	32
several orifice-diameters	
3-2-4 Coefficient of variation	32
3-2-5 Dimensional analysis	33
IV-RESULTS AND DISSCUTION.	34
4-1 Laboratory experiments	35
4-1-1The effect of pressure head and tube diameter on	35
discharge	
4-1-2 The effect of pressure head and diameter of nozzle	35
on	
4-1-2-a Discharge	38
4-1-2-b Manufacturer's cofficient of variation	38
4-1-3 The effect of pressure head and diameter of	39
outlets on discharge of investigation of	
outlets on discharge of innovated fitting	39
4-1-3-aThe effect of pressure head on discharge of	
innovated fitting	9
4-1-3-b The effect of number of thread teeth (type1), and	
length of screw (type2) on discharge of	
innovated fitting4	5

	17
4-1-4 The effect of valve ungle on	47
4-1-4-a 1)iscnarge	47
4-1-4-b Manufacture's coefficient of variation	47
1-2 Field experiments	47
4-2-1 The effect of nozzle spacing on lateral-line length.	47
4-2-2 The effect of pressure head on lateral-line length	54
4-2-3 The relationship between dimentionless groups	54
4-2-4 The effect of nozzle spacing on uniformity	
distribution	60
4-2-5 The effect of nozzles pressure head on uniformity	
distribution	60
4-2-6 The effect of valve angle and valves spacing on	
CUD and lateral-line length at different	
pressure heads	<i>60</i>
4-2-7 Economical view	60
V- SUMMARY AND CONCLUSION	65
VI- REFERENCES	70
VII- ARABIC SUMMARY	
List of tables	
(2-1): Equivalent length for different barbed sizes	10
(2-1): Equivalent length for different various numbers (2-2): Reduction coefficient, F, factor various numbers	
of equally spaced outlets along a lateral line	16
of equally spaced outlets along a lateral interminent	34
(3-1): The variables affect "h/L"	
(4-1): Discharge of tube at different tube -diameters and	36
pressure heads	30
(4-2): Discharge of nozzle at different nozzle -diameters	40
and pressure-heads	40
(4-3): Manufacturing coefficient of variation (CV) of	
nozzle at pressure head of "1.0 bar" and different	
nozzle -diameters	. 44

(4-4): Discharge of Innovated fitting at different	
pressure-heads	40
(4-5): Discharge of valve at different valve angles and	
pressure head of "I bar"	51
(4-6): Manufacturing variation (CV) of valve at pressure	
head of "0.75 bar " and different valve-	
angles	53
(4-7): Discharge distribution along lateral line at	
pressure head of "Ibar" and different nozzle	
spacings	55
(4-8): Discharge distribution along lateral line at	
pressure head of "1.4 bar" and different nozzle	
spacings	57
(4-9) : The relationship between dimensionless groups	
" h/L ", " $qx10^{-10}/g^{1/2}d^{5/2}$ ", and " d/s "	59
(4-10): Coefficient of uniformity distribution along	
lateral line at different nozzle spacings and	
pressure -heads	61
(4-11): A comparison between using one and three-	
nozzle diameters along lateral line on bubbler	
irrigation system	64
List of figures	
2-1 : Diagram of bubbler irrigation system.	13
2-2: Head losses gradient as a function of flow rate for	
four sizes of corrugated polyethlene pipe.	16
2-3 : Typical installation of bubbler irrigation system	17
2-4: Hydraulic head, delivery hoses outlet, and ground	
levels as functions of distance from the water	

	19
source.	25
3-1: Emitters tube of different diameters.	25
3-2 : Nozzle orifices	26
3-3 : Orifice emitter.	27
3-4: Screw fitting (type 1 and 2).	27
3-5a: Valve outlet emitter.	28
3-5b: Part details of valve emitter.	27
3-6: Pressure gage with connector.	30
3-7 : Pisometric tube.	30
3-8: Electronic digital caliper.	
3-8: Electronic digital early and 3-9: Orifice pore adjusted by drilling while held by a	. 31
nair of pliers	
4-1: Effect of pressure head on discharge at differen	. 37
the diameters	•
4-2: Effect of tube diameter on discharge at differen	 . 36
massare-heads	•
4-3a: Effect of pressure head on discharge at differen	41
nazle-diameters	
4-3b: Effect of pressure head on discharge of nozzle	. 42
different nortle-diameters	
4-4: Effect of nozzle diameter on discharge of nozzle	ai 43
different pressure-heads	• • •
Manufacturing coefficient of variation CV	<i>Oj</i>
nozzle at pressure head of I but a	710
different nozzle-diameters	47
4-6 : Effect of pressure head on discharge of two typ	es 48
financial fitting	
The state of number of teeth (type I) and length	ı oj
screw (type 2) on discharge at any	
pressure-heads	4 7

4-9: Manufacturing coefficient of variation "CV" of	
valve at pressure head of "0.75 bar" at	
different valve-angles5	3
4-10 : Discharge distribution along lateral-line at	
pressure head of "I bar" and different nozzle	
spacings50	5
4-11 : Discharge distribution along lateral-line at	
pressure head of "1.4 bar" and different	
nozzle spacings 58	3
4-12: The relationship between dimensionless groups	
"h/L", " $qx10^{-10}$ / $g^{1/2}$ $d^{5/2}$ ", and	
"d/s" 59)
4-13 : Effect of nozzle spacing on coefficient of	
uniformity distribution along lateral line at	
different pressure-heads61	