A Thesis Entitled

Neutron and Gamma Spectra Leaking Through Shielding Materials

Submitted to the Physics Department
Faculty of Science
Ain Shams University

For
The Degree of Doctor of Philosophy
in Salamaa

W A

in Science (Radiation Physics)

 \mathbb{R}^{4}

Waqdy Mimed Kansouli

(B.Sc. 1983; ALS: 1988)

Reactor and Moutron Physics Department

Mudem Research Center

Atomic Friency Authority

1996

ACKNOWLEDGMENT

The author gratfully acknowledges, professor Dr. Z. Milleegi, Physics Department, Faculty Of Science, Ain Shams University, for her kind supervision and encouragement.

My deep thanks to professor Dr. R.M. Megahid, Reactor and Neutron Physics Department, Nuclear Research Center, Atomic Energy Authority for suggesting the problem and his kind supervision and many valuable discussions.

My deep gratitude to Professer Dr. S. El-Khomisy Physics Department, Faculty Of Science, Ain Shams University for his kind interest and supervision.

My thanks to Dr. A. El-Sayed Abdo., Reactor and Neutron Physics Departments, Nuclear Research Center, Atomic Energy Authority for guidance and continuous help.

The author would like to express his thanks and appreciation to Reactor and Neutron Physics Department and Reactor Department, Nuclear Research Center, Atomic Energy Authority for the continuous support and encouragement to this work which was done in these departments.

My deep thanks to everyone help me in this work.

ABSTRACT

The aim of the work is to investigate the attenuation properties of steel, graphite, ilmenite concrete, ordinary concrete and hematite-serpentine concrete to fast neutrons and gamma-rays.

These materials are widly used for constructing shields for nuclear reactors and other radiation sources.

SUMMARY

in this work, experimental studies were performed to assess the attenuation properties of some materials widely used in reactor technology for neutrons and gamma-rays. The investigated materials includes steel, graphite, ilmenite concrete, ordinary concrete and hematite-serpentine concrete. Studies were carried out for homogeneous shields of spherical geometry made of steel and graphite with Pu-α-Be neutron source placed at their geometrical central point. collimated beam of reactor neutrons and gamma-Also , a rays was used to study the leakage fast neutron and gamma-spectra behind cylindrical barriers having different thicknesses of graphite and different types of concrete. Further the effect of exposing samples of ordinary and hematiteserpentine concretes to different temperatures on the of neutrons and gamma-rays was studied using attenuation the emitted reactor beam

Measurements of the leakage fast neufron gamma spectra have been carried-out with a neutron - gamma spectrometer with a stilbene scintillator coupled to 12 stage photomultiplier tube type EMI. Discrimination between undesired pulses of recoil electrons and recoil protons was with a zero cross over method based on pulse achieved shape discrimination technique. The spectrometer linearity, energy scaling and discrimination capability were checked with neutron and gamma-rays emitted from standard sources of Pu- α -Be, 22 Na, 137 Cs and 60 Co. The spectrometer energy scaling and stability were checked before and after each measurement by measuring pulse amplitude disritbution emitted from standard ²²Na source. The obtained energy scaling was used for converting the measured pulse amplitude

distribution to neutron or gmma-energy distributions by the unfolding codes given and discussed in this work.

The measured spectra of fast neutrons and gamma-rays were normalized to the same measuring time and presented in the form of displaysed spectra which show the relation between fluxes of neutrons or gamma-rays versus energies of neutrons or gamma-rays.

The given spectra of fast neutrons and gamma-rays were used to plot groups of attenuation relations which show the fluxes of neutrons or gamma-rays versus shield thickness in cm. The attenuation relations were used to derive the neutron total macroscopic cross-sections and total gamma-rays linear attenuation coefficients for different energies of neutrons and gamma-rays.

TABLE OF CONTENTS

ACKNOWLEDGME	<u>N</u> T	
ABSTRACT		
CHAPTER 1 C	GENERAL INTRODUCTION	
CHAPTER 2	SHIELDING OF GAMMA-RAYS	
	ND NEUTRONS	
2.1 In	troduction	27
2.2 Se	ources of Gamma-Rays	28
2.2.1 G	amma-Rays from Nuclear Reactors	28
a- P	rompt Gamma-Rays	29
b- S	hort -Lived Fission Product - Decay	
G	amma - Rays.	29
c- G	famma-Rays Production During the	
St	copping of Electrons.	30
2.2.2 G	Famma-Rays from other Sources.	30
a- R	Ladiative Capture Gamma-Rays.	30
b- I	nelastic Scattering Gamma-Rays.	31
c- C	Gamma-Rays Prodetion During the	
	Stopping of Electrons.	31
	Neutron Sources	32
2.3.1 N	Neutrons Emitted from Nuclear	
	eactor	32
	Prompt Fission Neutrons.	32
	Delayed Fission Neutrons	33
	Activation Neutrons.	33
	Photo Neutrons.	34
232]	Neutrons From Other Sources	35
2.3.2	Neutrons from (α, n) Reactions	35
h- ¹	Neutrons from (d, n) Reaction.	30
0- C-	Neutrons from (p, n) Reaction	31
2.4	Interaction of Gamma-Rays with	
	Matter	3′
	Photoelectric Effect.	3.
417	T HWW. or owner	

	vi -	
b-	Compton Effect.	39
C-	Pair Production.	41
d-	Rayleigh Scattering.	42
2.5	Interaction of Neutrons with Matter	42
a-	Elastic Scattering	42
b-	Inelastic Scattering of Neutrons.	44
c-	Radiative Capture.	45
d-	Charge-Particle Emission.	47
2.6	Shielding Material	48
2.6.1	Considerations in Material Selection	
	for Shielding Design	49
2.6.2	Materials for Stationary Nuclear	
	Radiation Sources	50
a-	Water	50
b-	Concrete	51
c-	Graphite	53
d-	Iron	54
e-	Lead	55
2,6.3	Materials for Mobile Nuclear	
	Radiation Sources	56
a-	Tungsten	56
b-	Depleted Uranium	56
c-	Lithium Hydride	57
d-	Polyethylene.	57
CHAPTER 3	METHODS AND TECHNIQUES	
	USED FOR NEUTRONS AND	
	GAMMA-RAYS MEASUREMENT	
3.1	Introduction	59
3.2	Gas Detectors	60
3.2.1	The Ionization Chamber	61
3,2.2	Proportional Counters	63
3.2.3	Geiger -Muller Counters	64
3.2.4	BF3 Detectors	65
3.2.5	He Detectors	65

		vii -	
	3.2.6	Fission Chamber	66
	3.3	Scintillation Detectors	66
	3.4	Semiconductor Detectors	71
	3.5	Thermoluminescence Detectors	74
	3.6	Pulse-Height Analyzer	74
CHAPTER		NEUTRON-GAMMA	
CHALLERY	•	SPECTROSCOPY BY	
		ORGANIC SCINTILLATOR	
	4.1	Introduction	77
	4.2	The Stilbene Crystal	78
	4.3	Methods Used for Discrimination	
		Between Neutron and Gamma Pulses.	80
	4.4	Zero Crossing Technique.	81
	a-	Time-to- Amplitude Conversion	
		Technique.	83
	ь	- Anticoincidence Technique.	83
	4.5	The Neutron-Gamma Spectrometer.	84
	4.5.1	General Discrimination	84
	4.5.2	Discrimination Against Undesired	
		Neutrons or Gamma Pulses.	85
	4.6	Spectrometer Calibration.	85
	4.6.1	Spectrometer Linearity.	87
	4.6.2	Spectrometer Plateau Curve	88
	4.6.3		90
	4.6.4	Gain standardization and Energy	
		Scale.	90
	4.7	Conversion Methods of Pulse	
		Amplitude Distributions.	92
	4.7.1	Conversion of Measured Recoil	
		Proton Pulses to Neutron Energy	
		Distributions.	92

		viii -	
4	.7.2	Conversion of Measured Recoil	
		Electron Pulses to Gamma Energy	
		Distribution.	96
4	.8	Measured Neutron and Gamma-ray	
		Spectra of Pu-α-Be Source.	99
CHAPTER	5	EXPERIMENTAL DETAILS	
5	.1	Introduction	102
. 5	.2	Spherical Geometry	102
5	.2.1	Homogeneous Shield Assembly.	102
5.	.3	Investigation of Cylindrical Shields	,
		Using Reactor Radiation.	103
5.	.3.1	Ordinary Concrete Shields	.00
		(Portland Concrete)	105
5.	.3.2	Hematite-Serpentine Concrete:	
		$(\rho = 2.5 \text{ g/cm}^3)$	105
5.	3.3	Ilmenite Concrete ($\rho = 3.5 \text{ g/cm}^3$)	107
5.	3.4	Graphite Samples ($\rho = 1.6 \text{ g/cm}^3$)	107
5.	3.5	Experimental Arrangement.	107
5.	3.6	Measuring Time and Power	
		Monitoring.	110
CHAPTER 6		RESULTS AND DISCUSSION	
6.	1	Introduction	111
6.	2	Results of Investigation using Pu-α-Be	
		Source.	112
6.	2.1	Neutron and Gamma Attenuation in	
		Steel Shields.	112
6.2	2.1.1	Spectra of Fast Neutrons	
		Behind Steel Barriers.	112
6.2	2.1.2	Gamma Spectra Behind Steel	
		Barriers.	117
6.2	2.2	Neutron Gamma Spectra Leaking	,
		through Graphite Shields.	121
6.2		Spectra of Fast Neutrons	. ~ !
,		Behind Graphite Barriers.	121
		Otapinto Duitiois.	

ix -

6.2.2.2 Gamma Spectra Behind	104
Graphite Barriers.	124
6.3 Results of Investigation Using Reactor	120
Beam	128
6.3.1 Neutron and Gamma Attenuation	120
in Graphite Barriers.	129
6.3.1.1 Spectra of Fast Neutrons	
Behind Graphite Barriers.	129
6.3.1.2 Gamma Spectra Behind	
Graphite Barriers.	132
6.3.2 Neutron and Gamma Attenuation	
in Ilmenite Concrete Shields.	135
6.3.2.1 Spectra of Fast Neutrons Behind	
Ilmenite Concrete Barriers.	139
6.3.2.2 Gamma Spectra Behind Ilmenite	
Concrete Shields.	142
6.3.3 Effect of Heating on Ordinary and	
Hematite-Serpentine Concretes.	150
6.3.3.1 Effect of Heating on Ordinary	
Concrete	150
6.3.3.2 Effect of Heating on Hematite-	
Serpentine Concrete.	152
CHAPTER 7 GENERAL CONCLUSION	163
REFERENCES	170
APPENDICES	182
ALL LANDAGED	

List Of Figures

Figure	Description	Page
No.		No.
2,1.	Diagram of Compton interaction.	40
4.1.	Block diagram of the P.S.D system.	86
4.2.	Relation between pulse amplitude and	
	electron energy E _{max} .	89
4.3.	Pulse height distribution in stilbene	
	bombarded simultaneously with neutrons	
	and gamma-rays. The anticoincidence	
	zero crossing method has been used to	
	eliminate gamma induced events.	91
4.4.	Spectrum of fast neutrons emitted directly	
	from Pu-α-Be neutron source.	100
4.5.	Spectrum of gamma-rays emitted directly	
	from Pu-α-Be neutron source.	101
5.1.	Experimental arrangement for spherical	
	shield investigation.	104
5,2,	The Experimental configuration II	
	(transmission)	109
6.1.	Spectra of fast neutrons behind different	
•	thicknesses of iron shield of spherical	
	geometry with Pu-α-Be neutron source.	113
6.2.	Attenuation of fast neutrons of different	
	energies in iron shield of spherical	
	geometry with Pu-α-Be neutron source	116

X1 -			
Figure	Description	Page	
No.		No.	
6.3.A.	Spectra of total gamma-rays behind		
	different thicknesses of iron shield of		
	spherical geometry with Pu-α-Be neutron		
	source.	118	
6.3,B	Spectra of total gamma-rays behind		
	different thicknesses of iron shield of	ı	
	spherical geometry with Pu-α-Be neutron		
	source.	119	
6.4.	Attenuation of reactor total gamma-rays of		
	different energy ranges in iron shield of		
	spherical geometry with Pu-α-Be neutron		
	source.	120	
6.5.	Spectra of fast neutrons behind different		
	thicknesses of graphite shield of spherical		
	geometry with Pu-α-Be neutron source.	122	
6.6.	Atttenuation of fast neutrons of different		
	energies in graphite shield of spherical		
	geometry with Pu-α-Be neutron source.	123	
6.7.	Spectra of total gamma-rays behind		
	different thicknesses of graphite shield of		
	spherical geometry with Pu-α-Be neutron		
	source.	126	
6.8.	Attenuation of total gamma-rays of differnt		
	energy ranges in graphite shield of		
	spherical geometry with Pu-α-Be neutron		
	source.	127	
6.9.	Reactor fast neutron spectra behind		
_	different thicknesses of graphite barriers.	130	

Figure	Description	Page
No.		No.
6.10.	Attenuation of reactor fast neutrons of	
	different energies in graphite shield.	131
6.11.	Reactor total gamma-ray spectra behind	
	different thicknesses of graphite shield.	134
6.12.	Reactor total gamma-dose-energy	
	distribution behind different thicknesses of	
	graphite shield.	136
6.13.A.	Attenuation of reactor total gamma flux in	
	graphite shield.	137
6.13.B.	Atttenuation of reactor total gamma dose in	
	graphite shield.	138
6.14.	Reactor fast neutron spectra behind	
	different thicknesses of ilmenite concrete	
	barriers.	140
6.15.	Attenuation of reactor fast neutrons of	
	different energies in ilmenite concrete	
	shield.	141
6.16.	Reactor total gamma-ray spectra behind	
i	different thicknesses of ilmenite concrete	
	shield.	144
6.17.	Attenuation of reactor total gamma-ray of	
	different energy ranges in ilmenite concrete	
	shield.	146
6.18.	Reactor total gamma-dose-energy	
	distribution behind different thicknesses of	
	ilmenite concrete shield.	147
6.19.A	Attenuation of reactor total gamma flux in	
6.10.5	ilmenite concrete shield.	148
6.19.B.	Attenuation of reactor total gamma dose in	
	ilmenite concrete shield.	149