
Assessment of papillary muscle traction in mitral valve prolapse by two-dimensional echocardiography and its relation to late potentials by signal averaged electrocardiogram

Submitted in Partial Fulfillment for The Master Degree in **Cardiology**

By Dr. Mohamed Mohamed Gomaa

 $\mathcal{M}.\mathcal{B}.\mathcal{B}.Ch.,$

616.1240754 M. M

Under Supervision of

Prof. Dr. Amal El-Sayed Ayoub

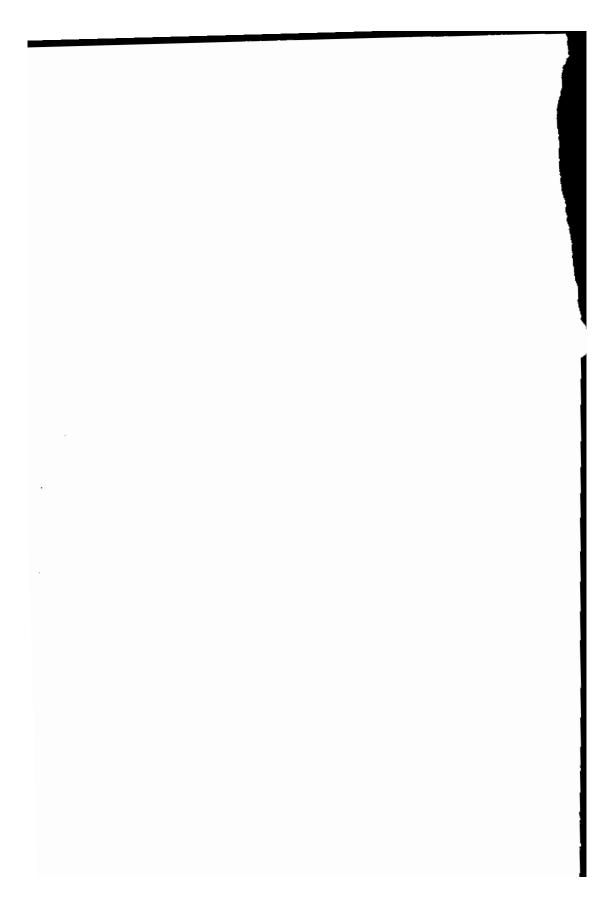
Professor of Cardiology Faculty of Medicine Ain shams University

Dr. Mohamed Ayman M. Abdel Wahab Saleh

Lecturer of Cardiology Faculty of Medicine Ain Shams University

Faculty of Medicine Rin Sham/ University 1997

Polologia



Acknowledgment

I'd like to appreciate my deepest thanks and gratitude to *Prof. Dr. Amal Ayoub*, Prof. of Cardiology, Ain Shams University, for her sincere supervision, great help and kind guidance through this work.

I'd like to express my deepest appreciation and thanks for *Dr. Ayman Saleh*, Lecturer of Cardiology, Ain Shams University, for his experienced advices which guided me in producing this work.

I'd like to thank my colleagues in Cardiology Department, Ain Shams University for their help.

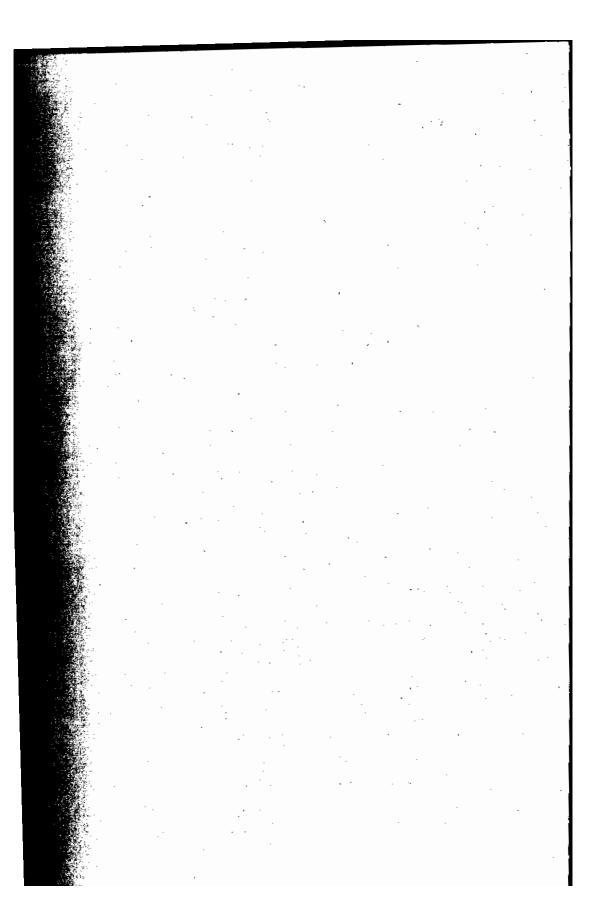
CONTENTS

P	age
Introduction	1
Aim of the work	3
Review of literature4	4
Mitral valve prolapse	4
Aetiology and associations	3
Clinical diagnosis	10
Investigations	25
Echocardiography	29
M-mode echocardiography	29
Two-dimensional echo	
Doppler echocardiography	39
Risk group and complications	1 2
Signal averaged electrocardiogram	54
Introduction	
Analysis	57
Late potentials	37
Indications	70
Limitations	77
Subjects and Methods	79
Results	37
Discussion	112
Summary and Conclusion1	120
Recommendations1	L 23
References1	153
Arabic Summary	

		į

LIST OF TABLES

Tab.	Title	Page
No.		
. 1	Presents the comparison of the ages of	87
	patients and controls	
2	Shows the distribution of gender among	88
	patients and controls	
3	Presents the comparison of the weights	88
	of patients and controls	
4	presents the comparison of heights of	88
	patients and controls	
5	Presents the compajrison of body surface	89
	area of patients and controls	
6	presents the frequency of patients	89
	symptoms	
7	Presents the frequency of auscultatory	89
	findings	
8	Presents the resting ECG findings of the	90
	patients group	
9	Presents the x-ray findings of the	90
	patients group	
l0a	Shows the comparison of the papillary	90
	muscle traction of patients and controls	
10b	presents the comparison of leaflet	91
	displacement in patients and controls	
10c	Presents the comparison of traction	91
	index in patients and controls	
10d	Presents the presence and severity of	91
	MR by CFI	
lla	Presents the QRS duration in patients	92
	and controls	


llb	Presents the RMS ₄₀ in patients and	92
	controls	
lic	Presents the LAS ₄₀ in patients and controls	92
lld	Shows the frequency of abnormal	93
na	SAECG among the patients and controls	00
l2a	Shows age of patients and its relation to	93
124	late potentials	50
12b	Shows gender of patients and its	93
	relation to late potentials	20
12c	Shows x-ray findings in patients and its	94
120	relation to late potentials	34
12d	Shows PMT in patients and its relation	94
120	to late potentials	J-31
12e	Shows leaflet displacement in patients	94
126	_	34
106	and its relation to late potentials	n E
12f	Shows traction index in patients and its	95
10	relation to late potentials	05
l2g	Shows resting ECG findings in patients	95
101	and its relation to late potentials	0.5
l2h	Shows severity of MR by CFI in patients	95
	and its relation to late potentials	
13	Study of the relation between certain	96
	parameters and occurrence of late	
	potentials in MVP	
14	Shows the clinical, echocardiographic	98
	and SAECG findings in patients with	
	MVP	
15	Shows the clinical, echocardiographic	100
	and SAECG findings in controls	

LIST OF FIGURES

Fig.	Title	Page
No.		
1	Diagramatic representation of	85
	measurements PM displacement	
2	Diagram illustrating the difference in	85
	systolic motion of PM and mitral leaflets	
3	Normal signal averaged ECG	101
4	Abnormal signal averaged ECG	102
5	Echocardiographic image for	103
	measurement of PMT	
6	Echocardiographic image for	103
	measurement of leaflet displacement	
7	Echocardiographic image at early systole	104
	in a patient with classic MVP	
8	Echocardiographic image at peak systole	104
	in a patient with classic MVP	
9	Auscultatory findings in patients	105
10	Resting ECG findings of the patients	105
11	X-ray findings of the patients group	106
12	A comparison of the papillary muscle	106
	traction of patients and controls	
13	A comparison of leaflet displacement in	107
	patients and controls	
14	A comparison of traction index in	107
	patients and controls	
l5	Incidence of MR by CFI in patients	108
16	Incidence of late potentials in patients	108
	group by SAECG	
17	PMT in patients with normal and	109
	abnormal SAECG	

18	Leaflet displacement in patients with	109
	normal and abnormal SAECG	
19	Traction index in patients with normal	110
	and abnormal SAECG	
20	Severity of MR by CFI in patients with	111
	normal and abnormal SAECG	

INTRODUCTION

INTRODUCTION

Mitral valve prolapse (MVP) is considered to be ofthe most prevalent cardiac one valvular abnormalities affecting as much as 5-10% of the population and is detectable in patients of all ages and both sexes. MVP exists in the setting of a hereditary background. It is transmitted as an autosomal trait. It may represent one manifestation of a number of systemic connective tissue disorders and/or thoracic abnormalities. MVP can co-exist with rheumatic mitral stenosis. Both ischemic heart disease and MVP are common disorders that could co-exist not infrequently (Braunwald, 1992).

Previous angiographic studies of MVP characterized by abnormal superior displacement of mitral leaflets above the level of the mitral annulus during systole. It has been postulated that this leaflet displacement may exert abnormal tension on papillary muscle tips causing their superior traction or displacement and that such traction may have adverse patho-physiologic effects. Recently, it has been observed that similar motion could be identified during echocardiographic examination of patients with classical MVP. Some studies suggested that in such patients, the papillary muscle and mitral leaflets move in parallel toward the left atrium in systole. Whereas, in normal subjects the papillary muscle moves apically

during systole in parallel with mitral annulus maintaining a relatively constant distance with respect to the annulus (Sanfilippo, 1992).

Late potentials have been advocated as predictors of ventricular electrical instability with clinically useful prognostic information in different cardiac disease states including coronary artery disease, dilated non-ischemic cardiomyopathy, syncope and idiopathic hypertrophic cardiomyopathy. However, extrapolation of such conclusions to other population subgroups is not necessarily appropriate. This is especially true in patients with mitral valve prolapse (MVP) who in addition to having a variety of abnormalities falsely positive, also have a higher frequency of ventricular arrhythmias (Kuchar et al., 1986 and Pratt et al., 1986).