Some Kinetic Aspects of Analytical Interest

THESIS SUBMITTED BY

ASHRAF ABDEL-AATY MOHAMED

M.Sc. (Chemistry) 1991

TO CHEMISTRY DEPARTMENT FACULTY OF SCIENCE

A'N SHAMS UNIVERSITY

632

FOR DOCTOR OF PHILOSOPHY IN CHEMISTRY

SUPERVISED BY

Li. M. F. El-shahat
P. A of Analytical and
It organic Chemistry
Lealty of Science
7. Shams University

Dr. T. Fukasawa Emerit. Prof. of Analytical Chemistry Faculty of Engineering Yar, mashi University

Acknowledgment

First and foremost, I would like to thank *God* for giving me the opportunity and will-power to accomplish this work.

I would like to express my deep gratitude and appreciation to Dr. *T. Fukasawa*, Emeritus Prof. of Analytical Chemistry, Faculty of Engineering, Yamanashi University, Japan, for his sincere guidance, fruitful discussions and criticism during this work.

Also, I would like to express my deep gratitude and appreciation to Dr. M. F. El-shahat, Prof. of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University, for his kind supervision, encouragement and support throughout this work.

Sincere thanks are extended to Dr. *M. Iwatsuki*, Prof. of Analytical Chemistry, Faculty of Engineering, Yamanashi University, Japan, for providing the laboratory facilities and his kind guidance.

I would like to extend my thanks to all colleagues in the Faculty of Science, Ain Shams University and also in the Faculty of Engineering, Yamanashi University, for their kind assistance.

Sincere appreciation should be expressed to *The Ministry of Education*, *Egypt*, for its support during my study in Japan.

Ashraf A. Mohamed

List of publications from the present dissertation:

- 1]-"Catalytic determination of iodide using the promethazine-hydrogen peroxide redox reaction".
 - Mohamed, A. A., Iwatsuki, M., El-shahat, M. F. and Fukasawa, T.;
 - * Proceedings of the <u>43rd</u> Annual Meeting for the Japan Society of Analytical Chemistry, Fukoka, Japan, Oct. 1994, P. 496.
 - * Analyst, 1995, 120, 1201.
- 2]-"Catalytic determination of vanadium using the perphenazinebromate redox reaction and citric acid activator".
 - Mohamed, A. A., Iwatsuki, M., Fukasawa, T. and El-shahat, M. F.;
 - * Proceedings of the <u>44th</u> Annual Meeting for the Japan Society of Analytical Chemistry, Sapporo, Japan, Sept. 1995.
 - * Analyst, in press.
- 3]-"Sensitive determination of trace iodide using its catalytic effect on the hydrogen peroxide oxidation of prochlorperazine".
 - Mohamed, A. A., El shahat, M. F., Fukasawa, T. and Iwatsuki, M.;
 - * Proceedings of the <u>5 th</u> Ibn Sina International Conference on Pure and Applied Heterocyclic Chemistry, Cairo, Egypt, to be presented, Dec. 1995.
 - * Anal. Chem. Acta, Communicated.
- 4]-"Sensitive determination of nitrite using its catalytic effect on the bromate oxidation of prochloperazine".
 - * Idem; Analyst, in press.
- 5]-"Trace determination of nitrite using its catalytic effect on the perphenazine -bromate redox reaction".
 - * Idem; Anal. Sci. Communicated.
- 6]-"Determination of trace vanadium using its catalytic effect on the prochlorperazine-bromate reaction and citric acid activator".
 - * Proceedings of the <u>5 th</u> Ibn Sina International Conference on Pure and Applied Heterocyclic Chemistry, Cairo, Egypt, to be presented, Dec. 1995.
 - * Idem; Anal. Chem. Acta, Communicated.

List of abbreviations

Abbr. Referent

AAS Atomic Absorption Spectrometry
CPH Chlorpromazine-Hydrochloride

ICP-AES Inductively coupled plasma - Atomic

emission spectrometry

ICP-MS Inductively coupled plasma - Mass spec-

trometry

NAA Neutron activation analysis

PCP Prochlorperazine
PM Promethazine
PP Perphenazine

PTD Phenothiazine derivative

PTD* Colored radical cation of phenothiazine

derivative

PTD** Colorless sulphoxide derivative

PTFE Polyteterafluoroethylene

THNS 2 - Hydroxy naphthaldehyde thiosemi-

carbazone

CONTENTS

Abstract	1
List of Figures	2 5
List of Tables	5
Summary	7
PART I: INTRODUCTION	
I.1. Principles and classification of catalytic methods	10
I.2. Historical view of catalytic analysis	13
I.3. Activation and inhibition	14
I.4. Sensitivity and detection limit	15
5. Properties and analytical applications of	
phenothiazines	18
I.6. Methods of iodide determination	22
I.7. Methods of nitrite determination	24
1.8. Methods of vanadium determination	27
PART II : EXPERIMENTAL	
II.a. Apparatus	32
* *	32
5	32
2. Reagents for iodide determination using the	
	33
3. Reagents for iodide determination using the	
prchlorperazine-hydrogen peroxide reaction	34
4. Reagents for nitrite determination using the	
	34
5. Reagents for nitrite determination using the	
perphenazine-bromate reaction	34
6. Reagents for vanadium determination using the	
perphenazine-bromate reaction	34

Reagents for vanadium determination using th	e
prochlorperazine-bromate reaction	35
II.C. Recommended procedures	35
1. Determination of iodide using the	
promethazine-hydrogen peroxide reaction	36
2. Determination of iodide using the	
prochlorperazine-hydrogen peroxide reaction	36
3. Determination of nitrite using the	
prochlorperazine-bromate reaction	37
4. Determination of nitrite using the	
perphenazine-bromate reaction	37
5. Determination of vanadium using the	
perphenazine-bromate reaction	38
6. Determination of vanadium using the	
prochlorperazine-bromate reaction	38
PART III: RESULTS AND DISCUSSION	ON
PART III: RESULTS AND DISCUSSION	ON
	ON
<u>Chapter 1.</u> Catalytic determination of iodide using	ON 40
<u>Chapter 1.</u> Catalytic determination of iodide using the promethazine-hydrogen peroxide reaction 1. Effect of acidity	40
<u>Chapter 1.</u> Catalytic determination of iodide using the promethazine-hydrogen peroxide reaction 1. Effect of acidity 2. Effect of promethazine concentration	40 40
 Chapter 1. Catalytic determination of iodide using the promethazine-hydrogen peroxide reaction 1. Effect of acidity 2. Effect of promethazine concentration 3. Effect of hydrogen peroxide concentration 	40 40 42
<u>Chapter 1.</u> Catalytic determination of iodide using the promethazine-hydrogen peroxide reaction 1. Effect of acidity 2. Effect of promethazine concentration	40 40 42 42
Chapter 1. Catalytic determination of iodide using the promethazine-hydrogen peroxide reaction 1. Effect of acidity 2. Effect of promethazine concentration 3. Effect of hydrogen peroxide concentration 4. Effect of ammonium sulfate concentration 5. Effect of temperature	40 40 42 42 48
Chapter 1. Catalytic determination of iodide using the promethazine-hydrogen peroxide reaction 1. Effect of acidity 2. Effect of promethazine concentration 3. Effect of hydrogen peroxide concentration 4. Effect of ammonium sulfate concentration	40 40 42 42 48 48
Chapter 1. Catalytic determination of iodide using the promethazine-hydrogen peroxide reaction 1. Effect of acidity 2. Effect of promethazine concentration 3. Effect of hydrogen peroxide concentration 4. Effect of ammonium sulfate concentration 5. Effect of temperature 6. Effects of foreign ions 7. Determination of iodate and periodate	40 40 42 42 48 48 48
Chapter 1. Catalytic determination of iodide using the promethazine-hydrogen peroxide reaction 1. Effect of acidity 2. Effect of promethazine concentration 3. Effect of hydrogen peroxide concentration 4. Effect of ammonium sulfate concentration 5. Effect of temperature 6. Effects of foreign ions	40 40 42 42 48 48 48 52

Chapter 2. Sensitive determination of trace iodide	÷
using its catalytic effect on the hydrogen peroxide	
oxidation of prochlorperazine	59
1. Effect of prochlorperazine concentration	59
Effect of hydrogen peroxide concentration	59
3. Effect of acidity	63
4. Effect of ammonium sulfate concentration	63
5. Effect of temperature	68
6. Effects of foreign ions	68
7. Determination of iodate and periodate	71
Calibration graph and detection limit	71
9. Kinetics and reaction mechanism	73
10. Determination of iodide in natural waters	75
Chapter 3. Sensitive determination of nitrite using	
its catalytic effect on the hydrogen peroxide	
oxidation of prochlorperazine	78
Effect of prochlorperazine concentration	78
2. Effect of bromate concentration	78
3. Effect of phosphoric acid concentration	78
4. Effects of order of addition and standing time	82
5. Effect of temperature	82
6. Effects of foreign ions	82
Calibration graph and detection limit	85
8. Determination of nitrite in natural waters	88
Chapter 4. Trace determination of nitrite using its	
catalytic effect on the perphenazine-bromate reaction	90
1. Effect of phosphoric acid concentration	90
2. Effect of prochlorperazine concentration	90
3. Effect of bromate concentration	94
Effects of order of addition and standing time	94
5. Effect of temperature	94
Effects of foreign ions	98

7. Calibration graph and detection limit	98
8. Determination of nitrite in natural waters	101
Chapter 5. Catalytic determination of vanadium usin	ng
the perphenazine-bromate redox reaction	104
1. Effect of phosphoric acid concentration	104
2. Effect of perphenazine concentration	104
3 Effect of bromate concentration	107
4. Effects of citric acid and other activators	107
5. Effect of temperature	107
Order of addition and effects of foreign ions	112
Calibration graph and detection limit	114
8. Reaction mechanism and activating effects	
of citric acid	114
9. Determination of vanadium in natural waters	117
<u>Chapter 6.</u> Determination of trace vanadium using	
its catalytic effect on the prochlorperazine-bromate	101
reaction and citric acid activator	121
2. Effect of phosphoric acid concentration	123
3. Effect of prochlorperazine concentration	123
4. Effect of bromate concentration	123
1. Choice of the activator	121
5. Effect of temperature	128
6. Effects of foreign ions	128
7. Calibration graph and detection limit	131
8. Reaction mechanism and activating effects	
of citric acid	134
9. Determination of vanadium in natural waters	136
References	138
Arabic summary	
Arabic abstract	

Abstract

Some Kinetic Aspects of Analytical Interest

Ashraf Abdel Aaty Mohamed Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

Six kinetic-spectrophotometric methods were developed for catalytic determinations of traces of pollutants in natural waters. Namely, two methods were developed for determination of each of iodide, nitrite and vanadium ions, respectively.

lodide was determined based on its catalytic effects on the H₂O₂ oxidation of promethazine (PM) and prochlorperazine (PCP). The calibration graphs are linear for up to 12.0 and 5.0 ng ml⁻¹ with detection limits of 0.1 and 0.03 ng ml⁻¹ iodide, respectively. The reaction mechanisms were inferred. The developed methods surpassed the standard Ce(IV)-As(III) reaction along with the existing methods of NAA and ICP-MS techniques, in sensitivity, selectivity and speed.

Nitrite was determined based on its catalytic effects on the bromate oxidations of PCP and perphenazine (PP). The calibration graphs were linear for up to 70 and 40 ng ml⁻¹ with detection limits of 0.8 and 0.5 ng ml⁻¹ nitrite, respectively. The methods surpassed the well established ion-chromatographic methods along with the standard method utilizing the modified Greiss reaction, in sensitivity, selectivity and speed.

Vanadium was also determined based on the bromate oxidations of PP and PCP in presence of citric acid activator. Linear calibration graphs were obtained for up to 6.5 and 5.0 ng ml⁻¹ with detection limits of 0.08 and 0.05 ng ml⁻¹ vanadium, respectively. The reaction mechanisms were suggested and the activating effects of citric acid were elucidated. The two methods surpassed the standard Fishman-Skougstad method along with the existing methods of NAA, AAS, ICP-AES and ICP-MS techniques in sensitivity, selectivity and speed.

<u>Keywords</u>: Kinetic-spectrophotometric techniques; Determinations of iodide, nitrite and vanadium; Reaction mechanisms; Activating effects; Rain and polluted river waters.

List of Figures:	Page
1. Absorption spectra of the red oxidation product of PM.	41
2. Effect of H ₂ SO ₄ concentration on the reaction rates in	
the I-PM-H ₂ O ₂ system.	43
3. Effect of H ₃ PO ₄ concentration on the reaction rates in	
the I-PM-H ₂ O ₂ system.	44
4 Effect of PM concentration on the reaction rates in	
the I-PM-H ₂ O ₂ system.	45
5. Effect of H ₂ O ₂ concentration on the reaction rates in	
the I-PM-H ₂ O ₂ system.	46
6. Effect of (NH ₄) ₂ SO ₄ concentration on the reaction rates	
in the I-PM-H ₂ O ₂ system.	49
7. Effect of temperature on the reaction rates in the	
I ⁻ PM-H ₂ O ₂ system.	50
8. Effect of standing time on the recovery of iodate and	
periodate using the I ⁻ PM-H ₂ O ₂ system.	53
9. Calibration graph for iodide determination using the	
Γ-PM-H ₂ O ₂ system.	54
10. Absorption spectra of the red oxidation product of PCP	.60
11. Effect of PCP concentration on the reaction rates in	
the I ⁻ -PCP-H ₂ O ₂ system.	61
12 Effect of H ₂ O ₂ concentration on the reaction rates in	
the I'-PCP-H ₂ O ₂ system.	62
13 Effect of H ₂ SO ₄ concentration on the reaction rates in	
the I'-PCP-H ₂ O ₂ system.	64
14.Effect of H ₃ PO ₄ concentration on the reaction rates in	
the Γ-PCP-H ₂ O ₂ system.	65
15.Effect of (NH ₄) ₂ SO ₄ concentration on the reaction rates	
in the I'-PCP-H ₂ O ₂ system.	67
16.Effect of temperature on the reaction rates in the	
Γ-PCP-H ₂ O ₂ system.	69
17.Effect of standing time on the recovery of iodate and	
periodate using the I-PCP-H ₂ O ₂ system.	72

18.Calibration graph for iodide determination using the	
I'-PCP-H ₂ O ₂ system.	74
19.Effect of PCP concentration on the reaction rates in	
the NO ₂ -PCP-BrO ₃ system.	79
20.Effect of bromate concentration on the reaction rates	
in the NO ₂ ⁻ -PCP-BrO ₃ ⁻ system.	80
21. Effect of H ₃ PO ₄ concentration on the reaction rates in	
the NO ₂ -PCP-BrO ₃ system.	81
22.Effect of standing time before bromate addition on the the NO ₂ -PCP-BrO ₃	
system.	83
23. Effect of temperature on the reaction rates in the	
NO ₂ -PCP-BrO ₃ system.	84
24. Calibration graph for nitrite determination using the	
NO ₂ -PCP-BrO ₃ system.	87
25. Absorption spectra of the red oxidation product of PP.	91
26.Effect of H ₃ PO ₄ concentration on the reaction rates in	
the NO ₂ -PP-BrO ₃ system.	92
27 Effect of PP concentration on the reaction rates in	
the NO_2 -PP-BrO ₃ system.	93
28.Effect of bromate concentration on the reaction rates	
in the NO ₂ -PP-BrO ₃ system.	95
29.Effect of standing time before bromate addition on the	
the NO ₂ -PP-BrO ₃	
system.	96
30. Effect of temperature on the reaction rates in the	
NO ₂ -PP-BrO ₃ system.	97
31 Calibration graph for nitrite determination using the	
NO ₂ -PP-BrO ₃ system.	100
32. Effect of H ₃ PO ₄ concentration on the reaction rates in	
the V-PP-BrO ₃ system.	105
33.Effect of PP concentration on the reaction rates in	
the V-PP-BrO ₃ system.	106

34 Effect of bromate concentration on the reaction rates	
in the V-PP-BrO ₃ system.	108
35.Effect citric acid concentration on the reaction rates	
in the V-PP-BrO ₃ system.	110
36.Effect of temperature on the reaction rates in the	
V-PP-BrO ₃ system.	111
37. Calibration graph for vanadium determination using the	
V-PP-BrO ₃ system.	115
38.Effect citric acid concentration on the reaction rates	
	124
39.Effect of H ₃ PO ₄ concentration on the reaction rates in	
	125
40.Effect of PCP concentration on the reaction rates in	
	126
41 Effect of bromate concentration on the reaction rates	
	127
42.Effect of temperature on the reaction rates in the	
	129
43. Calibration graph for vanadium determination using the	
V-PCP-BrO ₃ system.	132