Central Library - Ain Shams University

PREECLAMPSIA AND ECLAMPSIA SINDS OF SERUM MAGNESIUM LEVEL IN SEVERE

Of Master Degree in Obstetrics & Cynecology Submitted For The Partial Fulfilment sisedT

Vresented by

(W'B'' B'CP') HALA MOHAMED ALY FAYEZ FADLY

Ain-Shams University Faculty of Medicine Prof. of Obstetrics & Gynecology Professor Dr. Hamdi El Kabarity Supervisors

Ain-Shams University Faculty of Medicine Assist. Prof. of Obstetrics & Gynecology Assistant Professor Dr. Saied Mohamed Tohamy

Faculty of Medicine Assist. Prof. of Biochemistry Assistant Professor Dr. Magda Nagaty Ibrahim

Ain-Shams University

1661 Ain-Shams University Faculty of Medicine

ACKNOWLEDGEMENT

After thanking God , I have the pleasure to express my great indebtness and inherited gratitude to Professor Dr. Hamdi El Kabarity , Professor of Obstetrics and Gynecology , Ain-Shams University and Head of Unit "2" for suggesting the subject of this thesis and his generous help , valuable criticisms and continuous kind supervision.

I wish to express my deep thanks and utmost appreciation to Assistant Professor Dr. Saied Tohamy, Assistant Professor of Obstetrics and Gynecology, Ain-Shams University.

Thanks are also sincerely extended to Assistant Professor Dr.

Magda Nagaty, Assistant Professor of Biochemistry, Ain-Shams

Jniversity, for her generous cooperation.

Lastly, I would like to thank every patient and every one who participated in this work by a mean or another.

INDEX

SUBJECT			PAGE	
I.	INTRODUCTION		i	
1I.	AIM OF THE WORK		ii	
III.	REVIEW OF LITERATURE			
	1. MAGNESIUM		1	
	2. HYPERTENSIVE DISORE OF PREGNANCY	DERS	19	
	3. MAGNESIUM SULFATE		33	
IV.	SUBJECTS & METHODS		46	
٧.	RESULTS		51	
VI.	DISCUSSION		64	
VII.	SUMMARY		70	
VIII.	CONCLUSION		73	
IX.	REFERENCES		74	
Y	ADARIC CIMMADV		00	

INTRODUCTION

Central Library - Ain Shams University

INTRODUCTION

Preeclampsia-eclampsia, as one of the major complications of pregnancy, is of the commonest causes of maternal and fetal mortality & morbidity. Despite decades of intensive research & the discovery of much the underlying pathology, the exact etiology is still unknown. Accumulation of evidences have pointed out a potential relation-ship between "magnesium deficiency" during pregnancy & the occurrence of such complication;

Seelig 1980 , has observed common charateristics of pregnancy induced hypertension in magnesium deficient animals.

Koberlin 1982, reported the frequent association of hypomagnesemia with pregnancy toxemia.

Charbon 1962, reported that placentas of preeclamptic & eclamptic women contained less magnesium & more calcium than normal placentas.

Conradt et al. 1984, in a retroverted study showed that the frequency of preeclampsia-eclampsia is reduced by magnesium supplementation.

Moreover, Boston et al. 1989, reported an increasing levels of MAP with decreasing levels of plasma magnesium in PIH group of patients, not reported in normal ones.

In conclusion, the question of whether magnesium depletion plays a role in "preeclampsia-eclampsia syndrome" remains unresolved.

AIM OF THE WORK

AIM OF THE WORK

Study of "Serum Magnesium Level" in severe preeclamptic and eclamptic patients pointing out the possible role of "Magnesium Deficiency" in the pathogensis of such condition.

REVIEW OF LITERATURE

MAGNESIUM

Magnesium is an essential body electrolyte. It is the fourth most important cation in the body, and the second most abundant intracellular cation.

Biological Evolution Of Magnesium And Calcium

a recent monograph, Aikawa (1981) traces in a scholarly In the origin of life on earth from the formation of the manner composed of iron-magnesium silicate and the crust primeval ocean rich in magnesium, to the formation of clorophyl with magnesium in the center of the molecule, giving rise to photosynthesis and finally to the development of the animal adenosine triphosphate(ATP) cell containing with its "obligatory need for magnesium".

cursory look into the biologic evolution of magnesium and calcium through the development of life on earth indeed indicates the two bivalent elements were incorporated into that living cells for specific purposes, and perhaps as a check and balance other.Whereas each magnesium was needed for onenergy transformation and cell metabolsim, calcium appeared to be essential for structural stability & motility of the organism through its neuromuscular activity. Biological evolution would tend to favor the incorporation of calcium into primitive beings, when movement through space , because a necessity for survival. Even at this late stage of life on earth. magnesium to exert its role not only în catalyzing continued the manufacture of bone(alkaline phosphatase) and muscle protein protein synthetase), but also in regulating and Central Library - Ain Shams University (ribosomal protein

modulating tension development in striated muscle responding to ionized calcium. As life on earth became more demanding, the myocardium (through its rhythmic contraction and interaction between troponin, myosine, calcium and magnesium), was called upon to circulate blood throughout the organism(Iseri and French 1984).

FUNCTIONS OF MAGNESIUM IN THE HUMAN BODY:

- It is a cofactor in many enzyme systems; (alkaline phosphatase, enclases, leucine, aminopeptidase).
- 2. It is involved in phosphate transfer.
- 3. It is involved in muscle contractility & nerve excitability.
- 4. It is also an important cofactor in thermoregulation.
- It is believed to be essential for the structural stabilization of nucleic acids.

Its activity is often competitive with that of calcium & in a sense, magnesium may be considered nature's physiologic calcium blocker (Iseri & French).

Sources Of Magnesium :

Magnesium is plentiful in both animal and plant sources. Good sources which should be included in the pre-natal diet are :

whole-grain ,cereals , flour ,soyabeans, dried beans ,peas, nuts, peanuts, butter, chocolate, hard-cheeses, lean beef, most green vegetables (in which magnesium is organically combined in the prophyrin complex), corn, most seafoods and bananas (Ashe et al 1979). While highly purified food such as sugar, starch, soft drinks and distilled alcohol have very little magnesium. Cow's milk contains magnesium in reasonable amounts but

its high phosphate and calcium content adversly affects the absorption of magnesium(Cantin, Seelig, 1976).

Human Requirements:

The average diet contains from 10 to 20 mmol of magnesium daily adequate for normal requirements.

Much of the intake is excreted in the urine and the excess is in the feaces. Excretion in urine is reduced in cases of magnesium deficiency.

THE U.S. NATIONAL RESEARCH COUNCIL (1980) recommended the following daily dietary allowances for magnesium:

i. Infants up to 6 months	 50	mg.
2. Infants from 6-12 months	 70	mg.
3. Children from 1-2 years	 150	mg.
4. Children from 4-6 years	 200	mg.
5. Children from 7-10 years	 250	mg.
6. Males from 11-14 years	 350	mg.
7. Males from 15-18 years	 400	mg.
8. Males over 19 years	 350	mg.
9. Females over 11 years	 300	mg.
10.Females during pregnancy	 450	mg.
and lactation		

Magnesium is abundant in green plants, meat and milk.

The total body magnesium is about 1000 mmol(2,000m eq;24 gm). Approximately half of this content is in the bone, the remainder is divided among the other intra-cellular compartments, with only 1% in the extra-cellular space. About 1/3 of plasma magnesium is protein bound (Massry, 1977).

The concentration of magnesium in various tissues and fluids is shown in table(1). Serum magnesium correlates loosely with the total body levels(Opie, Hunt and Finlay, 1964). For this reason a normal serum magnesium level may not exclude a total body magnesium deficiency (McCollister, Flink and Doe, 1960).

	!!!!
Tissues and Fluids	M.EQ/L
Liver	20
Striated muscle	20
Brain	17
Kidney	13
RBCS	6
C.S.F	2.4-3
Serum	1.2-2.5
Gastric juice	1

TABLE(1) The concentration of magnesium in various tissues and fluids (Massry, 1977).

Absorption:

Orally ingested magnesium is absorped from the entire bowel; primarily in the proximal small intestine and to a lesser extent from the colon (Aikawa,1959). The ileum is the main site for absorption. Normally 30% of the ingested magnesium is absorped. It appears to be absorped through two separate transport mechanisms. One of these two active transport mechanisms is independent of calcium absorption, while the other is in competition with calcium absorption (Heaton, Hodgkinson and Rose, 1964). The absorption of magnesium is low and is poorly regulated depending upon the concentration in the intestine rather than upon the requirements (Alcock and Macintyre 1962).

Specific factors such as protein intake, administration of growth hormone(Hanna, 1961) and large doses of vitamin D and antibiotics have been shown to influence magnesium absorption from the gut, but no single factor has been shown to play a role in the absorption of magnesium similar to that of vitamin D in calcium absorption.

(N.B.) In normal individuals on regular diets, the average daily absorption from the G.I.T. is 0.14mg/Kg/day(Jerry,1976).

Excretion:-

Magnesium excretion depends on filteration and partial reabsorption by the kidney from the 2400 mg magnesium filtered normally through the glomeruli daily; about 2300 mg are reabsorped in the proximal and distal segments of the tubules and in the loop of Henle i.e. urine contains 100mg(9 mEq) per day provided

adequate daily intake.

N.B.

It is the ionic fraction of magnesium in plasma filtered by the glomeruli which appears in the glomerular filterate while any protein bound magnesium filtered is probably returned to the circulation via lymph except in renal diseases associated with heavy proteinuria (Martin , Mays , Rodwell and Granner, 1985).

However magnesium output is closely related to magnesium intake i.e. urinary magnesium reflects the absorped magnesium. When dietary magnesium is decreased, there occurs a profound and immediate fall in urinary magnesium with little changes in plasma level. A high magnesium intake on the other hand, augments the urinary magnesium and there is no indication that the intestinal absorption of magnesium is saturated at high levels of intake (Nordin 1976).

The renal tubular reabsortion seems to be an active transport mechanism similar to the mechanism in bowel. This process reaches (Tmax) beyond which all peak magnesium ĺS excreted(Hanna, Harrison and Macintyre 1960). In the dog, Massry and Seelig(1969) have reported a Tm Mg of 140 mg/min/kg and their data have been converted into mg/100 ml. of glomerular filterate (graph I). They found that Tm Mg was 5-6 mg/100ml of glomerular filteration. This was the load value at which the reabsorption slope reached its maximum value and corresponds to a plasma magnesium of about 8 mg/100ml. Womersley(1956) stated that the reabsorption was about 80% of the load at a plasma magnesium of 3mg/100 ml (Graph 2).