[4209 14

ROLE OF DIGITAL VASCULAR IMAGING
IN DIAGNOSIS OF RENAL ARTERY DISEASES

THESIS

====

Submitted in partial fulfilment for the Master degree of radiodiagnosis

Ву

Gamal Basuni Mahmoud Mohamed Khalil MB. B. CH.

Cairo University

616.075 G. B

SUPERVISORS

Prof. Dr. ABDEL ZAHER ALY HASSAN

M. D. Radiodiagnosis.

Ain Shams University .

Major General_Dr. MEDHAT GALEB

M. D. Radiodiagnosis

Maadi Armed Forces Hospital.

29202

المثالثة

1988

- 1 -

ACKNOWLEDGEMENT

I wish to express my deep thanks and gratitude to prof. Dr. ABDEL ZAHER ALY HASSAN , who been like a GOD father to me and to prof. Dr. MEDHAT GALEB , for pushing me in the first step to start my career; and to all my colleagues who keep pushing me foreward by their kind words .

To them all , I'm ownered by their endless effort in helping me to present this work to you .

CONTENTS

Pag	te
===	:=
- Introduction and aim of work 1	!
- Review of literature 2	2
- Radiographic anatomy of renal artery 7	73
- Radiological appearances of renal artery	
diseases by digital subtraction angiography	
compared with conventional angiography 8	84
- Opinion a summary and conclusion	
- References	
- Arabic summary	

-III -

KEY TO ABFREVIATIONS

-	A.D.CAnalouge digital convertor .
_	A.P.R Anatomical programed radiography .
_	D.S.ADigital subtraction angiography.
_	D.V.P Digital video processing .
_	I.A Intra-arterial .
_	I.V Intra-venous .
_	Kvp Exposure voltage .
_	mR Mill. Roentgen .
_	mA Mill. ampear .
_	S.V.C Superior vena cava .

- uR. -..... Micro Roentgen .

INTRODUCTION

INTRODUCTION AND AIM OF WORK

Digital subtraction angiography (D.S.A.) is an examination method that was first applied in clinical practice in 1980.

Based on digital image processing with subtraction and contrast enhancement. It clears the way for imaging blood vessels by means of intra-venous injection of con-trast medium.

In this way a simplified angiographic technique bec--ame avilable in which risks associated with angiography were reduced .

So the aim of this work is to give a brief idea abo-ut the subsistence and the ability of this new era in
the diagnosis of renal artery diseases .

REVIEW OF LITERATURE

HISTORICAL EACKGROUND OF D.V.I.

The immense current interest in vascular imaging is not a new phenomenon; it was no more than one month after Rontgen reported on his discovery of the X-ray in 1895, (Rontgen 1895), when Haschek and Lindenthal injected opaque material into the vessels of an amputated hand. Since then tremendous progress has occured involving all aspects of angiography, from X-ray equipment in general, rapid changers, and injectors to refinements of the chemical structure of contrast media. With regard to catheterization and contrast delivery methods, few changeshad occured since the early 1920, when the first angiogrames were reported in man. (Berberich 1923)

By the mid 1930's, direct arteriography of the peripheral and carotid arteries and of the aorta by tra-nslumbar approach were performed (Saddekni 1983)

Angiography based on the technique described by
"Forsmann ", who introduced a catheter into his own ri-ght atrium (Forsmann 1931) was reported .However, the
left side of the heart and thoracic aorta were still pr-actically beyond reach untill intravenous angiography

was introduced by ROPB and STEINBERG in 1938 . (Robb 1938)

Originally the method consisted of basilic vein cat-heterization with a 12-gauge cannula and rapid injection of 25-45 ml. of concentrated diodrast (70 %) with the patient in a sitting or standing position. The expoures were made in an interval based on measurement of the arm to pulmonary or arm to carotid circulation times.

This method remained in use well into the 1950, and the indications were expanded to include intra-venous acr-tography and peripheral and carotid angiography .(Stein-berg 1959)

For these indications, it became necessary to cannulate both arms and deliver up to 100 ml. of contrast medium per injection in order to improve visualization. However, simplification of arterial catheterization in the early 1950 by 'SELDINGER' allowed direct arteriog—raphy to replace intra-venous angiography. (Seldinger — 1953)

Interest in intravenous angiography was renewed in the late 1970 owing to the advent of computer technology, which made use of electronic enhancement and processing techniques . (Manelfe 1982)

Combined with another technique, subtraction, which had been described even before intravenous angiography by Ziedses des Plantes (Ziedses des Plantes 1935) and which had been used largely in Europe, the possibility of less invasive arterial depiction by intra-venous injection bec-ame feasible. (Marcel 1985)

D.S.A. TECHNOLOGY AND EQUIPMENT

The equipment used in digital subtraction angiography is a combination of X-ray equipment and high speed image processing equipment. The X-ray equipment consists a state of the art X-ray generator and a large field image intesifier coupled to a television camera. The signal from the television camera is digitized and fed into an image processor. Raw images are stored in the processor during the acquisation phase, processed, and then immediatly displayed at the termination of the angi-graphic examination. (Theron W.Ovitt 1985)

To get the best results from intra-venous digital subtraction angiography, both the doctor and the equip-ment must fulfil certain conditions:

- (1) The doctor rust be fully acquanted with the radiogra-phic anatomy of the vascular structures, the physiology
 of the circulation and the technical requirements of the
 examination procedure.
- (2) The equipment must provide adequate coverage of the area under examination with good resolution and contrast discrimination and in a simple convenient operation .

(3) Automatic exposure control in the digital system , the optimum exposures parameters are determined by automatic test shots at very low exposure levels , made during the preparation for each series .(Ludwig J.W. 1982)

TECHNICAL DESCRIPTION :

(1) Image Intensifier:

An image intensifier is the X-ray detector in a D.S.A. image recording system. It has an input screen of 14 in. diameter, switchable to 10 in. and 6 in. filds. (Oosterkanne 1974)

It is very desirable to have a large field image int-ensifier, 14 to 16 inches in diameter, so that a patie-nt's entir chest, abdomen, or both lower extremities
can be accommodated on one field. The larger image intens-ifier will decrease the spatial resolution of the final
image, because the 512 x 512 matrix is now encompassing a
larger image input area. This can be compensated for by
incorporating a 1024 x 1024 line acquisation system

(Barbaric 1982)

For accurate diagnosis, it is important to be able to cover an entire organ system so that all arteries can be followed to their termination . (W.Ovitt 1985)

Alarge image is also important because it decreases the number of contrast injections needed to evaluate an iliac or femoral arterial system . It is very important that the image intensifier be mounted on a C-arm or L-arm or similar apparatus so that the pateint remains in the supine position . In D.S.A., multiple angulated views are necessary for most examinations . The artifacts due to patient motion are greatly reduced when the intensifier tube system is rotated rather than the patient . To obtain a motionless examination , it is extremely important for the patient to be relaxed and in a supine rosition .

(John D. 1985)

(2) T.V. Chain (Television System)

There is a variable aperture iris interposed between the output of the image intensifier and the input of the television camera . This iris is set so that the amount of light produced by a 1-millrontegen exposure to the inte -ensifier complitely fills the dynamic range of the teli--vision system . Most available D.S.A. equipment will

operate using a 512 x 512 image matrix. The next step is to use an A-D convertor (analoge-to-digital) to digitize the video output from the television system and the subs-equent output of the A-D convertor is inputted into the image processor. (Ovitt 1985)

(3) X-ray Tube:

The requirements for the X-ray tube are similar to those for general angiography. A high heat capacity tube is necessary so that multiple high-intensity exposure can be made. The usual sequence in an intravenous D.S.A. procedure is to perform one or two exposures per second over 10 to 15 second interval after the injection of contrast material. This produces a rather high heat load for an ordinary X-ray tube, but it is readily tolerated by an X-ray tube with 400,000 to 800,000 anode heat storage unit available.

Special X-ray tube collimation and X-ray beam filtra-tion are required in D.S.A. systems, because of the
limited dynamic range of the television camera and the
necessity of having a uniform X-ray beam exposure to the
image intensifier. The preferred X-ray beam filtration is