AN INTEGRATED APPROACH FOR THE CONTROL OF LYMPHATIC FILARIASIS, USING ENVIRONMENTALLY SAFE ANTI-MOSQUITO AND ANTI-PARASITE AGENTS

A Thesis

Presented to the Faculty of Science
Ain Shams University

5-15-7-26 M-K For the Award of the Ph. D. Degree

By

Maha Kamal Tewfick

B.Sc. and M. Sc.

Research Assistant, Research and Training Center on Vectors of Diseases, Ain Shams University

Department of Entomology Faculty of Science Ain Shams University Cairo, Egypt.

1997

Thesis Examination Committee

NAME	TITLE	SIGNATURE

	(**************************************	***************************************

Supervisors:

- Prof. Dr. Bahira El Sawaf Head of Entomology Dept., Faculty of Science, Ain Shams University.
- Dr. Hoda A. Farid Assistant professor of Entomology, Faculty of Science, Ain Shams University.
- Dr. Adel K. El Sayed Assistant professor of Entomology, Faculty of Science, Ain Shams University.
- Dr. Belal A. Soliman Assistant professor, Faculty of Education, Suez Canal University.

Biography

Date & Place of birth: 4 January, 1961, Cairo.

Degrees awarded : B. Sc. Entomology, 1982,

Faculty of Science,

Ain Shams University, Egypt.

M. Sc. Entomology, 1990.

Faculty of Science,

Ain Shams University, Egypt.

Occupation : Research assistant, Research and Training

Center on Vectors of Diseases,

Ain Shams University.

Date of registration: May, 1991.

for the Ph.D.

Acknowledgments

The author wishes to express her thanks and gratitude to Dr. Adel M. Gad, Professor of Entomology, Faculty of Science, Ain Shams University, for suggesting the point of research, supervising the work and continuous guidance and encouragement. The critical reading of the manuscript by Dr. Gad is deeply acknowledged.

Many thanks and gratitude are also due to Dr. Adel I. Merdan, Professor of Entomology, Faculty of Science, Ain Shams University, for his valuable supervision and encouragement throughout the present study.

Thanks are due to Prof. Dr. Bahira El Sawaf, Head of Entomology Department and Director of Research and Training Center on Vectors of Diseases, Ain Shams University for her kind encouragement and offering facilities.

Thanks are specially due to Dr. Hoda A. Farid, Assistant Professor of Entomology, Faculty of Science, Ain Shams University, for her sincere assistance and critical reading of the manuscript.

Thanks are also due to Dr. Adel K. El Sayed, Assistant Professor, Faculty of Science, Ain Shams University for his kind guidance and encouragement.

Many thanks and appreciation are specially due to Dr. Belal A. Soliman, Assistant Professor, Faculty of Education, Suez Canal University, for his sincere and continuous guidance and advice during the present study.

Finally, I would like to acknowledge all staff members of the Research and Training Center on Vectors of Diseases, Ain Shams University, for their friendly help and support.

LIST OF CONTENTS

	Page
Abstract	I
List of tables	11
List of figures	īV
I. Introduction	1
II. Literature review	4
1. Mosquito larvicidal agents	4
1.1. Impact of bacterial larvicidal agent on the	
biological parameters of female mosquitoes	6
1.1.1. Fecundity	6
1.1.2. Fertility	7
1.1.3. Survival	8
1.2. Impact of bacterial larvicidal agents on the	
vector competence of mosquitoes to filariasis	9
1.2.1. Ingestion of microfilariae	9
1.2.2. Parasite burden	10
2. Microfilaricidal agents	10
2.1. Impact of microfilaricidal agents on the	
biological parameters of mosquitoes	12
2.1.1. Gonotrophic cycle	12
2.1.2. Fecundity	13
2.1.3. Fertility	14
2.1.4. Ovarian development	15
2.1.5 Survival	16

2.2. Vector competence to W. bancrofti of	
mosquitoes treated with microfilaricidal	
agents	19
2.2.1. Ingestion of microfilariae	19
2.2.2. Development of filarial parasite	23
2.2.3. Infection and infectivity rates	24
2.2.4. Parasite burden	27
III. Materials and methods	30
Mosquito collection and identification	30
2. Mosquito rearing	30
3. Mosquito control agents	31
4. Bioassay tests	32
4.1 Bioassay of B. sphaericus	33
4.2. Bioassay of ivermectin	33
5. Treatment of Cx. pipiens mosquitoes with the	
control agents	35
5.1. Treatment of Cx. pipiens larvae with B.	
sphaericus and ivermectin	35
5.2. Treatment of Cx. pipiens females with	
ivermectin	36
5.3. Combined treatment of both larvae and	
adults of Cx. pipiens with B. sphaericus	
and ivermectin	37
6. Biological parameters of Cx. pipiens	
females surviving sublethal concentrations	
of control agents	37

6.1. Duration of the gonotrophic cycle	37
6.2. Fecundity and fertility	38
6.3. Ovarian development and blood	
digestion	38
7. Effect of control agents on vector	
competence of Cx. pipiens adult mosquitoes	
to W. bancrofti	39
7.1. Uptake of microfilariae	40
7.2. Development of the parasite	41
7.3. Mosquito survival rate	41
7.4. Infection and infective rates and parasite	
burden	41
7.5. Loss of filarial infective larvae post-second	
blood meal	42
7.6. Detrimental effect of bioagents on W .	
bancrofti larvae	43
3 Statistical analysis	43
IV. Results.	45
1. Effect of B. sphaericus on Cx. pipiens	
1.1. Determination of a sublethal dose of B.	
sphaericus to Cx. pipiens larvae	45
1.2. Effect of B. sphaericus larval treatment on the	
biological parameters of Cx. pipiens	50
1.2.1. Biological parameters of non-infected	
mosquitoes	50
1.2.1.1 Survival	50

1.2.1.2. Ovipositional attributes	53
1.2.2. Biological parameters of filaria-infected	
mosquitoes	55
1.2.3. Vector competence to W. bancrofti of	
Cx. pipiens surviving bacterial larval	
treatment	57
1.2.3.1. Uptake of microfilariae	57
1.2.3.2. Survival to infectivity	58
1.2.3.3. Infection and infective rates	61
1.2.3.4. Parasite burden	62
2. Ivermectin	62
2.1. Determination of a sublethal dose of	
ivermectin to Cx. pipiens larvae	62
2.2. Effect of ivermectin larval treatment on Cx.	
pipiens	64
2.2.1. Biological parameters of non-infected	
mosquitoes	64
2.2.1.1. Survival to 15 d post-feeding	64
2.2.1.2. Ovipositional attributes	67
2.2.2. Biological parameters of filaria-infected	
mosquitoes	69
2.2.3. Vector competence to W. bancrofti of	
Cx. pipiens surviving ivermectin larval	
treatment	71
2.2.3.1. Uptake of microfilariae	71
2.2.3.2. Survival to infectivity	73
2.2.3. Infection and infective rates	75