EVALUATION OF MICROCIRCULATORY AND MACROCIRCULATORY STATES AS A FACTOR IN THE ASSESSMENT OF PROGNOSIS OF ACUTE ISCHAEMIC CEREBRAL STROKES

THESIS

Submitted for partial fulfillment of The M.D. Degree in *Neurology*

546 45

By Azza Abdel-Nasser M.B.,B.Ch., M.Sc.

Supervised by

Prof. Dr.M.Hassan El Banouby

Prof. Of Neuropsychiatry and Head of GeriatricsDepartment Ain Shams University Prof.Dr.M.OssamaAbdulghani

Prof. Of Neuropsychiatry
Ain Shams University

616: 81

A.A

Dr.Samia Ashour

Ass. Prof. Of Neuropsychiatry Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

1996

بسم الله الرحمن الرحيم

و أقراء باسم ربك النزى خلى " خلق الأنسان من على أقراء وربك الأكرم النزى علم بالقلم علم الأنسان والم يعلم "

صرق الله العظيم

سورة العلق ١-٥

ACKNOWLEDGMENT

At first, all due thanks to GOD who enabled me to accomplish this work.

I find it mandatory to express my appreciation and in debtedness to my great eminent professors, who actually taught me both science and humanity:

Prof. Dr. Mahmoud Moustafa, Prof. Dr. Emad Fadly, Prof. Dr. Youssef Abou Zeid and Prof. Dr. Sameha Abd El-Moneim.

The support and encouragement of Prof. Dr. Anwar El-Etribi is really very difficult to be appreciated in simple few words; he was so generous in giving me his extremely valuable advice as well as supplying me with some of the most recent references that helped me much in the accomplishment of this work.

My profound gratitude goes also to Prof. Dr. Amira Ahmed for her kind help and encouraging friendly attitude, that was a source of inspiration and great enthusiasm to me.

In addition, I have to extend my sincere thanks to my supervisors: Prof. Dr. Mohammed El-Banoubi, the one who suggested the idea of the work, giving his valuable comments and suggestions, Prof. Dr. M. Osama Abdul Ghani, who made prodigious

effort in reviewing the manuscript, playing a key-role in its final preparation, and supplying me with recent, precious references and finally Dr. Samia Ashour, who was so patient and tolerant in assisting me in almost all aspects of the whole work till it has reached its final form.

I also take the opportunity to acknowledge my senior and junior colleagues, and all the staff members of the Neuro psychiatric department, Ain Shams University, to which, I belong as a family member.

Finally, I would like to thank every person who had given me a hand in the preparation of this work especially Dr. Tarek Asaad for his endless help, Dr. Ola Abd El-Nasser for her meticulous revision of this work and, Dr. Neveine El-Nahhas and Mrs. Khloud who was responsible for its typing.

Lastly but never least ,Iam for ever greateful to my family ,a family that is alweys behind my achievement.

a

List Of Figures

- 1-Basal cerebral arteries of the circle of Willis.
- 2-Extracranial cerebovascular anatomy.
- 3-Major external carotid and vertebral collateral pathways.
- 4-Principle of TCD.
- 5-Summary of factors affecting blood flow velocity.
- 6,7,8-Spectrum analysis.
- 9,10-TCD equipment.
- 11-Relationship of ultrasonic probes to the ultrsound windows.
- 12- Transtemporal Approach.
- 13-Transorbital Approach.
- 14-Suboccipital Approach.
- 15-Submandibular Approach.
- 16-,17-TCD Samples.

List Of Abbreviations

ABI = Atherothrombotic brain infarction.

ACA = Anterior cerebral artery.

AF = Atrial fibrillation.

AVM=Arterio-venous malformation.

CBF = Cerebral blood flow.

CHOL.=Cholesterol

CMR glu. = Cerebral metabolic rate of glucose.

 $CMRO_2 = Cerebral metabolic rate of O_2$.

CNS=Centeral nervous system.

CPP = Cerebral perfusion pressure.

ECA = External carotid artery.

FV = Flow velocity.

HDL=Highy density lipoprotein.

ICA = Internal carotid artery.

ICP = Intracranial pressure.

IHD=Ischaemic heart disease.

LDL= Low density lipoprotein

LOC= Level of conciousness.

LVH=Left ventricular hypertrophy.

MABP = Mean arterial blood pressure.

MCA = Middle cerebral artery.

PCA = Posterior cerebral artery.

PET = Positron emission tomography.

rCBF=Regional cerebral blood flow.

SPECT=Substracted positron emission computed tomography.

TCD = Transcranial doppler.

 $\label{eq:TEE} \textbf{TEE} = \textbf{Transoesphageal echocardiography}.$

TIA =Transient ischaemic attack.

TTE = Transthoracic echocardiography.

VMR = Vasomotor reactivity or reserve.

 $\mathbf{VR} = \mathbf{Vasoreactivity}$.

List Of Tables

	Page
1- Summary of vessel identification criteria using	
freehand doppler techniques.	91
2- Summary of the clinical applications of TCD.	106
3- Normal values of PI and PTI of intracranial	
and extracranial arteries.	113
4- Normal values of resistance index of cranial	
and extracranial arteries.	113
5- Normal and pathologic values of hemispheric index.	115
6- Velocities from the MCA from different studies.	134
7- The mean values of mean blood flow velocity of the	
basal cerebral arteries in the different decades in	
Egyptian persons.	135
8- Descriptive data of age in the studied patients.	138
9- Frequency distribution of age.	138
10- Distribution of sex in our patients.	139
11- Distribution of different risk factors in the past	
history of the patients.	140
12- Number of patients with abnormal values in	
blood chemistry.	141
13- Abnormal echocardiographic findings among	
he studied patients.	142
4- Carotid Duplex findings among patients.	143
5- Flow velocities of the affected vessels before and	

after injection of acetazolamide (ACZ).	144
16- The relationship between the mean flow velocities	
of the affected vessels and the clinical state.	145
17- Mean flow velocities of the affected vessels and	
the different risk factors.	146
18- Relationship between vasoreactivity of the	
affected vessels and the past history of some risk factors.	147
19- Relationship between vasoreactivity of the affected	
vessels and the clinical picture in the acute stage.	148
20- Relationship between age groups and vasoreactivity	
of the affected vessels in the acute stage of stroke.	149
21- Relationship between vasoreactivity of the affected	
vessels and different risk factors in the acute stage of stroke.	150
22- Relationship between vasoreactivity in the follow up	
study and the clinical outcome (prognosis) in the follow	
up study.	151
23- Relationship between the clinical outcome of the	
patients in the follow up study and their Barthel index	
for their daily activities in the follow up study.	152
24- Vasoreactivity of the affected vessels at the onset	
and the clinical state of pts in the follow up study after	
	153
3 months. 25- Relationship between age and outcome after 3 months.	154
25- Relationship between age and outcome	
26- The relationship between the clinical outcome	155
and the presence of different risk factors.	

List Of Graphs

Graph (1): Mean age of our patients.

Graph (2): Frequency distribution of age.

Graph (3): Distribution of the different risk factors in the past history of our patients.

Graph (4): Number of patients with abnormal values in blood chemistry.

Graph (5): Distribution of abnormal echocardiographic findings among the studied patients.

Graph (6): Relationship between vasoreactivity of the affected vessels in the acute stage of ischaemic stroke and the presence of hypertension in the past history of the studied patients.

Graph (7): Relationship between age of patients and vasoreactivity of the affected vessels in the acute stage of stroke.

Graph (8a): Relationship between vasoreactivity of the affected vessels and different risk factors. (Smoking and 2 hr PP glu.).

Graph (8b): Relationship between vasoreactivity of the affected vessels and different risk factors. (LDL-cholesterol and ve LVH).

Graph (9): Relationship between vasoreactivity of the affected vessels in the follow-up assess and the clinical outcome of patients in the follow-up study of 31 patients after 3 months.

Graph (10): Relationship between vasoreactivity of the affected vessels in the acute stage of stroke and the clinical outcome of patients in the follow-up study after 3 months, (n=33 patients).

Graph (11): Relationship between age of patients and the clinical outcome of patients in the follow-up study after 3 months.

Graph (12): Relationship between clinical outcome of patients in the follow-up study and the presence of different risk factors. (Smoking).

Graph (13): Relationship between clinical outcome of patients in the follow-up study and the presence of different risk factors. (LDL-Cholesterol and LVH).