

Ain Shams University
Faculty of Medicine
Dept. of Anesthesia, Intensive Care,
and Pain Management.

New Strategy for Management of Morbid Obese Patients in Intensive Care Unit

Essay

Submitted for Partial Fulfillment of Master Degree in General Intensive Care

ByTamer Adel Gomaa

M.B, B.CH (Zagazig University)

Under Supervision of

Dr. Gamal Eldin Mohammad Ahmad Elewa Prof. of Anesthesia, Intensive Care, and Pain Management Faculty of Medicine, Ain Shams University

Dr. Adel Mohamad Alansary
Assist. Prof. of Anesthesia, Intensive Care, and Pain Management
Faculty of Medicine, Ain Shams University

Dr. Mohamed Mohamed Abdel-Fattah Ghoneim

Lecturer of Anesthesia, Intensive Care, and Pain Management

Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2014

First and foremost, thanks to **ALLAH**, the most merciful and the greatest beneficent.

I would like to express my great appreciation to **Dr. Gamal**Eldin Mohammad Ahmad Elewa, Professor of Anesthesiology,
Intensive Care, and Pain Management, Faculty of Medicine,
Ain Shams University; for his sincere effort, valuable advice
and great confidence that he gave me throughout the whole
work. His time and supreme effort are clear in every part of
this work. Many thanks and gratitude for him.

I am deeply grateful to **Dr. Adel Mohamad AlAnsary**, Assistant Professor of Anesthesiology, Intensive Care, and Pain Management for his great directions all through the work and for his continuous advice.

Also, I would like to thank Dr. Mohamed Mohamed Abdel-Fattah Ghoneim, Lecturer of Anesthesiology, Intensive Care, and Pain Management for the great help he has given to me.

Finally no words can express the warmth of my feelings to My family, to whom I am forever indebted for their patience, support and help. Special thanks and gratitude to My father who helped and advised me a lot.

List of Abbreviations

ABW	Adjusted Body Weight	
ACS	Abdominal Compartment Syndrome	
AF	Atrial Fibrillation	
AFOI	Awake Fibre Optic Intubation	
AKI	Acute Kidney Injury	
APACHE	Acute Physiology And Chronic Health Evaluation	
ARDS	Acute Respiratory Distress Syndrome	
ATN	Acute Tubular Necrosis	
BMI	Body Mass Index	
BSA	Body Surface Area	
CAD	Coronary Artery Disease	
CHG	Chlor Hexidine Gluconate	
Ст	Centimeter	
CNS	Central Nervous System	
CO_2	Carbon Dioxide	
СРАР	Continuous Positive Airway Pressure	
CT	Computed Tomography	

List of Abbreviations (Cont.)

CVVH	Continuous Veno Venous Hemofilteration	
DVT	Deep Venous Thrombosis	
ECG	Electro Cardio Graph	
ERV	Expiratory Reserve Volume	
FEV ₁	Forced Expiratory Volume in the first second	
F_iO_2	Oxygen Fraction in the Inspired air	
FRC	Functional Residual Capacity	
FVC	Forced Vital Capacity	
G	Gram	
GERD	Gastro Esophageal Reflux Disease	
Hr	Hour	
HbA1c	Hemoglobin A1c	
HIV	Human Immunodeficiency Virus	
IAH	Intra Abdominal Hypertension	
IAP	Intra Abdominal Pressure	
IBW	Ideal Body Weight	

List of Abbreviations (Cont.)

ICU	Intensive Care Unit	
IGF	Insulin like Growth Factor	
IL	Interleukine	
Kg	Kilogram	
KHz	Kilo Hertz	
L	Liter	
LMWH	Low Molecular Weight Heparin	
LV	Left Ventricle	
M	Meter	
MHz	Mega Hertz	
Min	Minute	
Ml	Milliliter	
NASH	Non Alcoholic Steato Hepatitis	
NF	Necrosis Factor	
OSA	Obstructive Sleep Apnea	
PAI	Plasminogen Activator Inhibitor	
PAP	Pulmonary Artery Pressure	
PCA	Patient Controlled Analgesia	

List of Abbreviations (Cont.)

PEEP	Positive End Expiratory Pressure	
PEG	Percutaneous Endoscopic Gastrostomy	
PO ₂	Oxygen Tension	
PVCs	Premature Ventricular Contractions	
QTc	Corrected QT interval	
R	Radius	
RV	Right Ventricle	
TLC	Total Lung Capacity	
TNF	Tumour Necrosis Factor	
TREC	T-Cell Receptor Excision Circle	
TV	Tidal Volume	
UBP	Urinary Bladder Pressure	
UOP	Urine Output	
US	Ultra Sonography	
VDRF	Ventilator-Dependent Respiratory Failure	
WHO	World Health Organization	

List of Tables

	Page
Table 1: WHO Classification of Obesity according to BMI	5
Table 2: Definitions of Co-morbidities	37
Table 3: Indications for tracheostomy in morbid obese patients	54
Table 4: Common bedside vascular procedures in critically ill morbid obese patients	66
Table 5: Recommended drug dosing for critically ill, morbid obese patients	89

List of Figures

	Page
Figure 1: The pathological effects of morbid obesity on body systems	11
Figure 2: Pathophysiology of obesity cardiomyopathy	17
Figure 3: Mechanism of hypoxemia in morbid obese patients	18
Figure 4: Chest wall pressure-volume curves of obese patients	20
Figure 5: The endocrinal changes in morbid obese patients	30
Figure 6: Glidescope, Fastrach, and Airtraq optical laryngeoscope respectively	51
Figure 7: Optiflow system for nasal high flow oxygen56	5
Figure 8: Tunneled central venous catheter	71
Figure 9: Statlock catheter securing device	72

Contents

Protocol

Pa	age
Acknowledgement	
List of abbreviations	
List of tables	
List of figures	/11
Introduction	. 1
Aim of The Work	. 3
Obesity and Body mass index	. 4
Physiologic Consequences of Obesity	11
Obesity and its impact on intensive care unit outcome	36
Challenges in the care of critically morbid obese	
Patients in intensive care unit	17
Summary	93
References 10)2
Arabic Summary	

INTRODUCTION

The prevalence of obesity is increasing at an alarming rate worldwide (*Salome et al.*, 2008). It is considered epidemic in the world in general, and it is an increasingly major health hazard in many developing nations (*Pelosi et al.*, 1999).

Obesity can be classified according to body mass index (BMI) to overweight, class I, class II, and class III or morbid obesity in which BMI is equal or exceeding 40 kg/m² (*Krai and Heymsfield*, 1997).

Morbid obesity results in significant physiologic and pathologic changes in different body systems like coronary artery disease, diabetes mellitus (DM), hypertension, cerebrovascular stroke, abnormal lung function, cancers etc. Morbid obesity increases the incidence of complications, length of hospital stay, and poorer outcome (*Vaughan and Conaham*, 2000).

Management of morbid obese patients admitted to intensive care unit (ICU) constitutes a challenge to the ICU medical staff regarding intubation, tracheostomy, radiologic

procedures, vascular access, hemodynamic monitoring, nutritional, nursing, and drug dosing (*Varon and Marik*, 2001).

Safe and successful management of the obese patients necissates an established level of organizational commitment, including staff education, clinical expertise, and specific care protocols (*Hogue et al.*, 2009).

AIM OF THE WORK

The aim of this essay is to know the pathophysiological characteristics of critically ill obese patients and to know the new recommendations for their management in the critical care setting.

OBESITY AND BODY MASS INDEX

1. Defining Obesity:

Body mass index (BMI) is a method used to estimate human body fat burden in an individual. It describes relative weight for height and is significantly correlated with total body fat content (*Adams et al.*, 2006).

Body mass index (BMI) is calculated as weight (kg)/height squared (m²). To estimate BMI using pounds and inches, use: [weight (pounds)/height (inches)²] x 703

Examples for metric and non-metric conversion formula for calculation of BMI:

(a) Metric conversion formula= weight (kg) / height (m^2) :

Example of BMI calculation: A person who weighs 78.93 kilograms and is 177 centimeters height has a BMI of 25:

Weight (78.93) kg / height
$$(1.77m)^2 = 25$$

(b) Non-metric conversion formula = weight (pounds) / height (inches)²:

Example of BMI calculation: A person who weighs 164 pounds and is 68 inches height has a BMI of 25:

weight (164 pounds)/ height (68 inches) 2 x 703= 25 (Adams et al., 2006).

Overweight persons are those with body mass index (BMI) ranges from 25 to 29.9 kg/m². Obesity can be subdivided to class I with BMI ranges from 30 to 34.9 kg/m² and class II with BMI ranges from 35 to 39.9 kg/m² (*Leary et al.*, 2000).

Any person whose body mass index (BMI) exceeds 40 kg/m² is diagnosed as severely or morbidly obese. This equates to be about 100 pounds (45.5 kg) overweight or more than two times the ideal body weight (*Leary et al.*, 2000)(table 1).

Table 1: WHO Classification of Obesity according to BMI

WHO Classification	BMI (kg/m ²)
Underweight	<18.5
Normal weight	18.5-24.9
Overweight	25.0-29.9
Class I obesity	30.0-34.9
Class II obesity	35.0-39.9
Class III obesity Commonly called morbid or severe obesity	BMI: 40-49.9 kg/m ² morbidly obese BMI: >50 kg/m ² super obese

(Yusuf et al., 2005).

The BMI should be used to assess overweight and obesity and to monitor changes in body weight. In addition, measurements of body weight alone can be used to determine efficacy of weight loss therapy (*Adams et al.*, 2006).

Clinical obesity is a syndrome involving both weight and metabolic changes, and is influenced by both genetic and environmental factors. Both aspects can participate in the pathology associated with obesity. The specific factors can be categorized into weight-related, physiologic, and proinflammatory. All may participate in the response to stress factors (*Karason et al.*, 1997).

Obesity was not included as a co-morbid variable in the development of the APACHE (acute physiology and chronic health evaluation) prognostic indices. However, morbidly obese patients have an eight fold higher mortality following blunt trauma than non obese patients (*Parameswaran et al., 2006*). This is probably because height and weight are not routinely recorded in ICU. Thus, the usual prognostic scores that are designed to predict the mortality of ICU patients may neglect an important parameter that may lead to an under-estimation of mortality in the specific population of obese patients, as reflected by an observed mortality that is higher than the predicted mortality (*Estenssoro et al., 2002*).