1100c | K

PROSTAGLANDIN E_2 IN CERVICAL SOFTENING IN MEDICALLY INDICATED LABOR INDUCTION AT/OR NEAR TERM

147

A thesis submitted to the

Division of Graduate Studies and Research University of Ain Shams

6(8.4 E.A

In partial fulfillment
of the requirements for the degree
Doctor of Medicine
In Obstetrics and Gynecology

by in Muhammad 2°

d 25 6 12

ESSAM AMMAR

M.S., University of in Shams, 1982

Supervisors

PROF. MAHER MAHRAN

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University PROF. HAMDY EL-KABARITY

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

~

ABSTRACT

In order to detect the influence of preinduction intracervical prostaglandin E2 (PG E2) gel on cervical ripening and labor in patients at/or near term with an unfavorable cervical state, 0.5 mg PG E2, suspended in a viscous gel, was instilled into the cervical canal in 25 patients with unripe cervices (Bishop score < 5) to accelerate ripening before planned induction with oxytocin titration. The patients treated with the gel were compared to 25 similar untreated controls. Among patients given the PG E2 gel, 50% had induced labor, delivering without further stimulation within 12 hours whereas this occurred only in 4% of the controls; the difference is statistically significant. Patients undelivered after treatment with PG E2 gel achieved a considerable and statistically significant improvement of cervical score (P < 0.001) whereas in the controls there were also significant changes in cervical score (P < 0.05) registered but still not as remarkable as in the treated patients. Thus, the cervical score changed from a mean of 2.7 prior to treatment to a mean of 7.5 within 12 hours after treatment. In the controls, the corresponding means were 2.4 and 3. The mode of delivery seems to show that there is a tendency to reduce the number of cesarean section, being 16.7% in the treated group and 40% in the controls, but it did not reach statistical significance. No maternal side effects were observed and there were no adverse effects on the fetuses. Pretreatment with intracervical PG E2 gel reduces the risk of failed induction, with success rates of 95.8% in the treated patients and 56% in the controls, and provides the mother with an experience similar to spontaneous labor without harming the fetus.

ACKNOWLEDGEMENT

1 am truly appreciative of the opportunities, teachings, and examples in living given to me by my faculty advisor and principal professor, Dr. Maher Mahran. His examples of hard work and searching for valid scientific answers to problems in the obstetric and gynecological world are ones that we, his students, must dedicate ourselves to assimilate. I am also extremely grateful to Professor Mahran who provided the opportunity to begin a project applicable to a thesis, and at the same time, let me experience a culture new from that in which I had functioned within my life to that point.

My deepest thanks to my advisor, Professor Hamdy El-Kabarity, for his leadership and guidance during the time I spent in my thesis. He has provided me with inspiration and motivation that, I am sure, will stay with me for years to come. I am also grateful to him for spending many long hours in careful review of my work.

I would like to express my appreciation to Dr. T.A. Siddiqi, for providing the excellent atmosphere for training for a year in the Perinatal Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A., that is so conducive to the learning process. During this time I had the chance for collecting my references from the so magnificent library of the University of Cincinnati College of Medicine, that includes everything which is necessary and complimentary for the research process. I hope that we will have a part of all its divisions in our college and department very soon.

I am thankful for the hard work and friendship of all the residents of the Department of Obstetrics and Gynecology of Ain Shams University for providing me with the patients to whom this study was applied. Special thanks must be given to Sherif El-Ghetani and Sameh Abdel-Hafez in this concern.

4

My appreciation to the staff of Upjohn Company, especially Atef Wahba, who supplied me with the Prostaglandin E2 gel, catheters, and patient record files.

I wish to acknowledge my appreciation for my wife, Somia Tawfik, Audiology Department, who has supported me throughout my graduate education.

Finally, but most importantly, I cannot thank and give enough praise to the most important people in my life, my family. My sister, Assistant Professor, Samia Ammar, Pathology Department, is so dear to me. My parents are the greatest blessing I have been given. My father's love and support is unequaled. Their love and strength have given me the confidence and enthusiasm one needs for a successful career in Obstetrics and Gynecology. To them goes my most grateful acknowledgement.

DEDICATION

This thesis is dedicated to my father; my sister, Samia; and my mother who is not alive to share our happiness.

Their continual love and support made this work possible.

TABLE OF CONTENTS

			Page
ABSTRACT			ii
ACKNOWL	EDGEM	ENT	iii
DEDICATION	ИС		v
TABLE OF	CONTE	NTS	vi
LIST OF TA	ABLES		ix
LIST OF FI	GURES		x
LITERATU	RE REV	IEW	1
1.	THE M	ORPHOLOGY OF THE HUMAN CERVIX	1
	1.1	The Nonpregnant Cervix	1
	1.2	The Cervical Changes During Pregnancy	5
	1.3	The Cervical Changes of Prelabor and Labor	7
	1.4	The Cervical Changes of the Puerperium	9
2.		LOGICAL AND BIOCHEMICAL ASPECTS OF RIPENING OF THE HUMAN CERVIX	11
	2.1	General Aspects of Fibrous Connective Tissue	11
	2.2	Histologic and Biochemical Correlates of Cervical Ripening	15
	2.3	Hormonal Regulation of Cervical Connective Tissue Metabolism	24
3.	PHYS	ICAL CHARACTERISTICS OF THE CERVIX	29
4	CONT	ROL OF THE CERVICAL STATE	37
	4.1	Cervical Priming and Uterine Activity	38
	4.2	Drug-Induced Priming of the Cervix	38
5.	INDU	CTION OF LABOR	48
	5.1	Drug Induced Induction of Labor	48
	5.2	Oxytocin	49
	5. 3	Prostaglandins	52

í

			Page
6.	METH	ODS OF CERVICAL PRIMING	55
	6.1	Evaluation of the Cervix (Measurement of Cervical Ripeness)	57
	6.2	The Ideal Priming Agent	66
	6.3	Methods of Cervical Priming	67
7.	LOCAL APPLICATION OF PROSTAGLANDIN E ₂ FOR CERVICAL RIPENING OR INDUCTION OF TERM LABOR		88
	7.1	Intracervical Application of PG E ₂ Gel	88
	7.2	Intravaginal Application of PG E2	94
	7.3	Extra-Amniotic Application of PG E2	110
PATIENTS	AND M	ETHODS	120
1.	Inclusi	ion Criteria	120
2.	Exclus	sion Criteria	120
3.	Drugs		122
4.	Study	Design	122
5.	Methods		123
	5.1	Part I - Therapy	123
	5.2	Part II - Therapy	134
6.	Analys	sis	135
RESULTS			136
1.	Part I (Priming Phase)		136
	1.1	Bishop Score	136
	1.2	Contractions and Delivery During the First 12 hours	136
	1.3	Rupture of Membranes	138
	1.4	External Monitoring (Cardiotocography)	138

			Page
2,	Part II	(Induction Phase)	138
	2.1	Spontaneous Labor	144
	2.2	Oxytocin Use	144
	2.3	Success of Induction	144
	2.4	Amniotomy	147
	2.5	Mode of Delivery	147
	2.6	Side Effects	147
	2.7	The Use of Analgesia	151
	2.8	Newborns	151
DISCUSSION AND CONCLUSION		154	
SUMMARY	,		160
BIBLIOGR.	APHY		162

LIST OF TABLES

Table		Page
1	Method of Pelvic Scoring	58
2	Criteria for Preinduction Scoring	61
3	Inducibility Rating	63
4	Inducibility Rating	63
5.	Proposal for a New Pelvic Score	6 5
6	The Original Bishop Score	121
7	The Characteristics of the Study Group (Group A) and the Control Group (Group B)	124
8	Distribution of Parity in the Patients Before Priming with PG E ₂	126
9	Distribution of Gestational age in the Patients before Priming with PG $\rm E_2$	128
10	Distribution of Bishop Score in the Patients before Priming with PG E ₂	130
11	Indication for the Induction of Labor	132
12	Changes in Cervical Scores	137
13	Results of Intracervical Instillation of PG E ₂ in the Study Group	141
14	Parity and Mean Change in Cervical Score Before Induction with Oxytocin	142
15	Gestational Age and Mean Change in Cervical Score Before Induction with Oxytocin	142
16	Initial Cervical Score and Mean Change in Cervical Score before Induction with Oxytocin	143
17	The Results of Patients with Successfully Induced Meaningful Uterine Contractions	145
18	The Results of Patients with Successfully Achieved Vaginal Delivery	146
19	Mode of Delivery	148
20	Detailed Apgar Scores	152
21	The Outcome of Newborns	153

LIST OF FIGURES

<u>Figures</u>		Page
1	The Collagen Fibril (Histologic Appearance)	13
2	The Chemical Composition of the Lower Part of the Human Cervix	19
3	The Dilatation Versus Time Curve	31
4	Distribution of Parity in the Patients Before Priming with PG E ₂	127
5	Distribution of Gestational Age Before Priming with PG E ₂	129
6	Distribution of Bishop Score in the Patients Before Priming with PG E ₂	131
7	Progression of Bishop Score After Priming with PG E ₂ Gel (Study Group)	139
8	Progression of Bishop Score in the Control Group	140
9	Cumulative Curves of the Stimulation-Delivery Time and the Induction-Delivery Time (Labor Induction)	149
10	Cumulative Curves of the Stimulation-Delivery Time and the Induction-Delivery Time (Labor Induction)	150

CHAPTER 1

THE MORPHOLOGY OF THE HUMAN CERVIX

Unlike other structures, the cervix has no fixed morphology. Indeed, the dramatic changes that occur in response to pregnancy and labor appear to be unique in the human body (Danforth, 1983).

In considering the form and structure of the cervix, two distinct systems would ordinarily be discussed: 1) its mucous membrane, including the squamous epithelium that covers the portio vaginalis, the squamocolumnar junction, and the mucosa of the endocervix, all of which undergo changes at the different stages of the menstrual cycle, of pregnancy and of labor, and 2) the wall, or substance of the cervix, which determines its shape or form. The integrity of the first system is vital to the appropriate migration and transport of sperm (Danforth, 1983), but this is a subject with which we are not now concerned. The second system, the characteristics of the wall of the cervix, permits it to carry out its vital functions of acting as a barrier to retain the conceptus and opening at an appropriate time to permit the conceptus to be expelled from the uterus (Conrad and Ueland, 1976; Danforth, 1983). Here we will discuss the morphologic characteristics of the wall of the cervix.

1.1 The Nonpregnant Cervix

1.1.1 Gross Characteristics and Attachments

The normal human cervix is about 2.5 to 3 cm in length. Its anteroposterior diameter is about 2 to 2.5 cm, the lateral diameter about 2.5 to 3 cm. Their difference is due to the shape of the cervical canal which in the sagittal plane is straight and in the frontal plane, spindle shaped. The wall of the cervix is about 1 cm thick throughout its length.

The cervix is divided into two portions, the portiovaginalis and portio supravaginalis, according to the segments that lie respectively below and

above the vaginal reflection. The vaginal reflection is located at about the junction of the inferior and middle thirds of the cervix. The uterine supports (the pubocervical fascia anteriorly, the uterosacral ligament posteriorly, and of most importance, the transverse cervical or cardinal ligaments laterally) are attached to the cervix immediately superior to the vaginal reflection. In the nonpregnant woman, they stabilize the cervix in approximately the center of the pelvis, and during pregnancy they are the "guy ropes" the uterus pulls upon to expel the baby in the second stage of labor (Danforth, 1983).

1.1.2 The Fibrillar Composition of the Cervix

1.1.2.1 Collagen

The human cervix is composed predominantly of fibrous connective tissue, which is demonstrated by contrast stains to be almost entirely collagen (Danforth, 1947, 1954 and 1983; Hughesdon, 1952). The uterine cervix from fertile nonpregnant women contains 80% water (Liggins, 1978). Collagen can account for as much as 50% of the total dry weight, as Danfort et al (1974) demonstrated in the human cervix. As a proportion of total cervical protein, collagen represents 82% (Danforth and Buckingham, 1973).

1.1.2.2. Elastic Tissue

Elastic tissue has been demonstrated in the cervix, but there is difference of opinion as to the amounts normally present and its physiologic significance in terms of the changing morphologic characteristics of the cervix in pregnancy and labor (Danforth, 1983). In Danforth's specimens (1947), stains for elastic tissue showed the presence of minute and, in his opinion, insignificant amounts of these fibers. The fibers were found to be very sparsely scattered in a haphazard manner throughout the substance of the cervix. They were most abundant in and around the walls of the large blood vessels. Elsewhere they constituted but a fraction of 1% of the total fibrous tissue of the cervix. More recently, Leppert et al. (1982) demonstrated the presence of elastin

in the cervices of two human cesarean-hysterectomy specimens, the biopsy material of one human nonpregnant fibroid uterus after delivery in two women with incompetent cervices, and cervical tissues from six cycling and six castrated monkeys. Although the amounts and concentration of elastin were not determined, a photomicrograph of one of the human cervices appeared to demonstrate a greater number of elastic fibers than were found in Danforth's specimen (1947). Leppert et al. (1982) concluded that although the amount of elastin appeared to be low, its presence might account for the rapid dilatability of the cervix in labor and the rapid return to normal shape after delivery.

1.1.2.3 The Fibromuscular Junction

The transition from myometrium of the corpus to connective tissue of the cervix is quite variable from one specimen to another. Its characteristics can often be discerned by gross examination of the stained slide held before a light or view box, the contrast in color between myometrium (red) and the collagenous cervix (blue in Masson, green in Milligan trichome) is readily apparent. Microscopic examination is usually needed to determine the exact point of transition from predominantly muscle to predominantly collagen. In most cases, the transition occurs over the course of 2 or 3 mm, in some less so. When a line is drawn across the critical area of transition it is sometimes wavy (Danforth, 1983).

1.1.2.4 Muscle

As noted by Hughesdon (1952), outside the mucosa the outer quarter or third of the wall is muscular like the corpus: the inner and major part consists of moderately cellular connective tissue, rich in collagen and containing some bundles of immature muscle fibers. He referred to the outer muscle layer as the extrinsic muscle of the cervix, since it forms part of a continuous layer running from fundus to vulva. The branch of this layer

which splits off and arches over the fornix is also seen. Its extent of penetration into the portio seems to vary but is generally most marked anteriorly. The muscle bundles of the extrinsic muscle occupy the outer quarter to third of the cervical wall and run, here as elsewhere throughout the uterus, in every possible direction. Between them lie broad loose collagenous septa, as in the outer and corresponding part of the corpus. The muscle bundles branching off, and arching over the fornix, are just visible. Internally, forming the bulk of the cervix, lies a broad mass of fibrous connective tissue. It contains a variable proportion of scattered muscle bundles, to which he referred as the intrinsic muscle of the cervix. The distinction is not absolute, however, as muscle size falls off gradually from above downwards. Danforth (1954) found no consistent distribution pattern of cervical muscle in the fringe or most peripheral areas of the portio supravaginalis where rather uniformly there appeared moderate to heavy strands of smooth muscle, the bundles of which ran in all directions and were separated from one another by considerable amounts of collagen. These strands were better developed laterally, about the uterine vessels, than either anteriorly or posteriorly. The author found these thin, scattered, attenuate muscle strands embedded in this heavy collagen matrix entirely dissimilar from the powerful, closely packed, collagen-sparse corporeal musculature. He suggests that this attenuate muscle may serve the purpose of protection for the uterine vessels during pregnancy and labor, and also that it may be concerned in the prompt return of the cervix to its normal contour immediately after the conclusion of labor.

The studies of the contractile ability of the nonpregnant cervix have been made by Najak et al. (1970) in vitro. They found that the nonpregnant cervix showed spontaneous contractility. However, in their study only the outer contractile layer was used. The same was found by Hughesdon (1952)