TOXICITY HAZARDS OF SOME HEAVY METALS TO PLANTS
GROWN IN FOLLUTED SOILS

BY

FATHY IBRAHIM EL-SAID HEADER

B.Sc. (Agric.), Faculty of Agriculture, Kafr El-Sheikh, Alexandria University (1970)

M.Sc. (Agric.)(Soil Science), Faculty of Agriculture, Kafr El-Sheikh, Tanta University(1980)

THESIS

Submitted in Partial Fulfilment of the Requirements of the Degree of

631:01

DOCTOR OF PHILOSOPHY

IN

AGRICULTURE (SOIL SCIENCE)

Department of Soil Science
Faculty of Agriculture
Ain-Chams University,
1987

APPROVAL SHEET

Name : FATHY IBRAHIM EL-SAID HEADER.

Title : Toxicity hazards of some heavy metals to

plants grown in polluted soils.

This thesis has been approved by:

Prof. Dr. S. El-Shent

Prof. Dr. M. H. Hilal

Prof. Dr. Valaat & Colobia

(Committee in Charge)

Date: / / 1987

ACKNOWLEDGEMENT

Firstly, ultimata thanks to God.

The present work has been carried out under the direct of supervision of Prof.Dr. Saad M. El-Sherif, Soil Science Department, Faculty of Agriculture, Ain-Shams University, Prof.Dr. A.F. El-Sherif and Dr.L.A. Abdel-Dayem, Associate Prof., Soils and Water Use Lab. National Research Center, to whom the author is greatly indebted for their extremely valuable suggestions, kind encouragement and keen interest in the progress of the work.

The facilities provided by the National Research Center are greatly appreciated.

Thanks are also due to all colleagues in the Soils and Water Use Laboratory, NRC for their valuable help in various ways during procurement of this work.

CONTENTS

	Page
INTRODUCTION	1
I REVIEW OF LITERATURE	4
	•
I.1. Elemental composition of sewage sludge	4
I.2. Organic matter, humic and fulvic acids content	;
in the sewage sludge	6
I.3. Effect of sewage sludge application on plant	
growth	7
I.4. Effect of sewage sludge application on the	
elemental composition of plants	9
1.4.1. Zinc	9
I.4.2. Copper	11
I.4.3. Nickel	13
I.4.4. Cadmium	15
I.4.5. Lead	17
I.5. Effect of sewage sludge application on some	
chemical properties of soil	18
I.5.1. Soil pH	18
I.5.2. Soluble salts in the soil (EC)	19
I.6. Effect of sewage sludge application on the	
availability of heavy metals	20
I.7. Organo-metal complexation	22
I.7.1. Nature of metal complexes with humic and	
fulvic substances	23
I.7.2. Stability constant of metal humic substance	
complexes	24
I.7.3. Behaviour of heavy metal-organic matter	
complexes in soils	25
I.8. Status of heavy metals in Egyptian soil treate	
with sewage sludge	26

6

	Page
II. MATERIAL AND METHODS	0.57
	2 7
II. 1. Soil and sewage sludge samples	27
II. 2. The first experiment	27
II. 3. The second experiment	29
II. 4. The third experiment	30
II. 5. The fourth experiment	31
II. 6. Methods of analyses	32
III. RESULTS AND DISCUSSION	35
III.1. Characterization of humus materials	
(humic and fulvic acid in sludge)	35
III.2. Effect of humus material on soil pH and on	
the mobility of heavy metals	41
III.2.1. Effect of heavy metals and humus materials	•
on soil pH	41
III.2.2. Effect of heavy metals and humus materials on	n
the mobility	43
III.2.2.1. Zinc mobility	43
III.2.2.2. Copper mobility	48
III.2.2.3. Nickel mobility	53
III.2.2.4. Medmium mobility	58
III.3. Effect of continuous water leaching on the	- 0
heavy metals leachates content and redistri-	
bution in soil columns amended with sewage	
sludge	65
III.3.1. Effect of continuous water leaching on the	-
leachates content of the heavy metals	65
III.3.2. Effect of continuous water leaching on soil	-
pH and redistribution of heavy metals in soil	
columns	71
III.3.2.1. Effect of leaching on soil pH	71
III.3.2.2. Effect of leaching on the redistribution	
of available heavy metals in soil columns	7 5
III.3.2.2.1. Zinc	75
III.3.2.2.2. Copper	7 8
	10

	Page
III.3.2.2.3. Nickel	77.0
III.3.2.2.4. Cadmium	79
	79
III.4. Effect of sewage sludge application, sources	
and incubation period on soil pH and trans-	
formation of heavy metals	81
III.4.1. Effect on soil pH	81
III.4.2. Effect of sewage sludge application rates,	
sources and incubation period on trans-	
formation of heavy metals in soil	83
III.4.2.1. Effect on Zn and Cd transformation	83
III.4.2.2. Effect on Cu and Ni transformation	92
III.5. Effect of sewage sludge application on the	-
availability-, uptake-of heavy metals and	
alfalfa yield	101
III.5.1.Effect of sewage sludge application on the	
availability of heavy metals	101
III.5.2. Effect on heavy metals uptake	104
III.5.3. Effect on alfalfa yield	104
IV. SUMMARY	109
	112
V. APPENDIX	117
VI. REFERENCES	
	121
ARABIC SUMMARY	

LIST OF TABLES

Tab le	No.	Page
L	Some physical and chemical characteristics of sandy soil under investigation	28
2	Some chemical characteristics of sewage sludge used in the experiments	28
3	Mineral constituents of sewage sludges	28
4	Some characteristics of pure HA, FA and the humus extracted from the two sources of sewage sludge	36
- 5	Main IR adsorption bands of humic substances	3 9
6	Effect of different rates of application and sources of HA, FA and the humas on initial pH values in sandy soil	42
7	Effect of different rates of application of HA FA and the humus extrated from Abo Rawash sewas sludge on Zn mobility under different soil pH values	ge
8	Effect of different application rates of HA, FA and the humus extracted from Abo Rawash sewage sludge on Cu mobility under different soil pH values	49
9	Effect of different application rates of HA, FA and the humus extracted from Abo Rawah sewage sludge on Ni mobility under different soil pH values	S 4
10	Effect of different application rates of HA, FA and extracted from Abo Rawash sewage sludge on Cd mobility under different soil pH values.	59 59
II	Effect of continuous water leaching on the concentration of some heavy metals in leachates	3.66

Table	No.	Page
I2 :	Effect of continuous water leaching on the per- centage of the heavy metals in leachates at the end of experiment	68
13	Changes in pH values of treated sandy soil through leaching by continuous water flow	74
I4	Effect of continuous leaching by water on the redistribution of some heavy metals in the tested soil	76
15	Effect of different levels and sources of S.S. application, and incubation period on soil ph	82
I 6	Effect of different levels and sources of S.S. application and incubation period on different forms of extractable Zn	84
17	Effect of different levels and sources of S.S. application and incubation period on different forms of extractable Cd	85
I8	Effect of different sources of sewage sludge and incubation period of a particular application rate (200 gm/kg sandy soil) on different forms of extractable Zn	87
19	Effect of different sources of sewage sludge and incubation period of a particular application rate (200 gm/kg sandy soil) on different forms of extractable Cd	8 8
20	Effect of different levels and sources of S.S. application on the total concentration of some	
SI	heavy metals in soil	90
	different forms of extractable Cu	9.3

Table N	0.	Page
22	Effect of different levels and sources of sewage sludge application and incubation period on different forms of extractable Ni	. 94
23	Effect of different sources of sources of sewage sludge and incubation period of a particular application rate (200 gm/kg sandy soil) on different forms of extractable Cu	95
24	Effect of different sources of sewage sludge and incubation period of a particular application rate (200 gm/kg sandy soil) on different forms of extractable Ni	96
25	Effect of different levels and sources of sewage sludge application on recovery of heavy metals by NH4AOc-EDTA as percent of the total added at the end of experiment	99
26	Effect of sewage sludge sources and different application levels on soil pH, EC, EC, total and DTPA extractable heavy metals	102
27	Effect of sewage sludge sources and different application levels on mineral constituents of alfalfa	105
28	Effect of sewage sludge sources and different application levels on the yield of clover plants.	IIO

LIST OF FIGURE

rigure	No.	Fuge
I	Infra-red spectrum of humic acid extracted from Abo Rawash sewege sludge	3 8
2	Infra-red spectrum of humic acid extracted from El-Gabel El-Asfer	3 8
3	Infra-red spectrum of fulvic acid extracted from Abo Rawas sewage sludge	40
4	Infra-red spectrum of fulvic acid extracted from El-Gabel El-Asfer sewage sludge	40
5	Effect of different application rates of the humus materials extracted from Abo Rawash sewage sludge on the concentratio of water extractable Zn at the initial soil pH (A) and soil pH 4.5 (B)	46
6	Effect of soil pH values on the concentration of water extractable Zn at the application rate of I50 mg humus materials extracted from Abo Rawash sewage sludge / kg soil	4 6
7	Effect of different application rates of the humus materials extracted from Abo Rawash sewage sludge on the concentration of water extractable Cu at the initial soil pH (A) and soil pH 4.5 (B)	50
8	Effect of soil pH on the concentration of water extractable Cu at the application rate of 150 mg humus materials extracted from Abo - Rawash sewage sludge / kg soil	50
9	Effect of different application rates of the humus materials extracted from Abo Rawash sewage sludge on the concentration of water extractable Ni at the initial soil pH (A) and soil pH 4.5 (B)	55

Figure	No.	Page
IO	Effect of soil pH on the concentration of water extractable Ni at the application rate of I50 mg humus materials extracted from Abo Rawash sewage sludge / kg soil	•
II	Effect of different application rates of the humus materials extracted from Abo Rawash sewage sludge on the concentration of water extractable Cd at the initial pH (A) and soil pH 4.5 (B)	•
12	Effect of soil pH on the concentration of water extractable Cd at the application rate of I50 mg humus materials extracted from Abo Rawash sewage sludge/kg soil	•
13	Effect of different application rates of the HA extracted from Abo Rawash sewage sludge on the percentage of water extractable heavy metals at the initial soil ph	63
14	Effect of different application rates of the FA extracted from Abo Rawash sewage sludge on the percentage of water extractable heavy metals at the initial soil ph	63
15	Leached heavy metals as a percent of the native affected by continuous water leaching of blank.	69
I 6	Leached heavy metals as a percent of the total amount added as affected by continuous water leaching of soil columns treated with salts form.	70
17	Leached heavy metals as a percent of the total amount added as affected by continuous water leaching of soil columns treated with Abo Rawas sewage sludge	72

		Pulle
Figure N	0.	Σ,
18	Leached heavy metals as a percent of the total amount added as affected by continuous water leaching of soil columns treated with El-Gabel El-Asfer sewage sludge	73
19	Effect of different sources of sewage sludge and incubation period of a particular application rate (200 gm/kg soil) on different forms of extractable Zn	89
20	effect of different sources of sewage sludge and incubation period of a particular applica- tion rate (200 gm/kg soil) on different forms of extractable Cd	89
21	Effect of different sources of sewage sludge and incubation period of a particular application rate (200 gm/kg sandy soil) on different forms of extractable Cu	97
22	Effect of different sources of sewage sludge and incubation period of a particular application rate (200 gm/kg sandy soil) on different forms of extractable Ni	97
23	and at of different levels of Abo Rawash (A)	- . 100

LIST OF APPENDIX

Table No.	Page
I Effect of different application rates of Ha, FA and the humus extracted from El-Gabel El-Asfer sewage sludge on Zn mobility under different soil pH values	117
Effect of different application rates of HA, FA and the humus extracted from El-Gabel El-Asfer sewage sludge on Cu mobility under different soil pH values	II8
Effect of different application rates of HA, FA and the humus extracted from El-Gabel El-Asfer sewage sludge on Ni mobility under different soil pH values	II9
4 Effect of different application rates of HA, FA and the humus extracted from El-Gabel El-Asfer sewage sludge on Cd mobility under different soil pH values	
ATT OF ONE DOTT THE ACTUADA	120

IMPRODUCTION

The transfere of heavy metals from sludgeamended soil to plant and grains and on to the
animal is of concern to those involved with the
application of municipal wastes on land. Maximum
loading rates for sewage sludges on land will be
influenced by the degree to which crops will absorb
hazardous heavy metals from sludge amended soils
and the degree to which animals will absorb these
elements from the grains and forage.

Many workers pointed out that metal-rich sewage sludge, drastically reduced the yield of some crops after a critical amount of that sludge was added to the soil. These critical limits depend on the source of the sewage sludge, the application rate and its frequency, the soil removal mechanisms and the removal capabilities of plant species.

Sewage sludge contains more than 50% of its weight, organic matter. Humic and Julyic acids