ENERGY REQUIRED FOR CUTTING OPERATION OF SOME FIELD CROP RESIDUES

By

SABER SAAD MAHMOD MEGAHED

B.Sc. Agric. Cooperative Sc. (Agricultural Education Studies), 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in Agricultural Science (Agricultural Mechanization)

Department of Agricultural Engineering Faculty of Agriculture Ain Shams University

ENERGY REQUIRED FOR CUTTING OPERATION OF SOME FIELD CROP RESIDUES

By

SABER SAAD MAHMOD MEGAHED

B.Sc. Agric. Cooperative Sc. (Agricultural Education Studies), 2005

Under the supervision of:

Dr. Moustafa Fahim Mohamed Abdel-Salam

Associate Prof. of Agricultural Engineering Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (principle supervisor)

Dr. Mahmoud Ahmed Mohamed El-nono

Prof. Emeritus of Agric. Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

APPROVAL SHEET

ENERGY REQUIRED FOR CUTTING OPERATION OF SOME FIELD CROP RESIDUES

By

SABER SAAD MAHMOD MEGAHED

B.Sc. Agric. Cooperative Sc. (Agricultural Education Studies), 2005

This thesis for M.Sc. degree has been approved by:
Dr. Magdy Ahmed Baiomy Ibrahim Head of Research, Agric. Eng. Inst., Agric. Research Center.
Dr. Mubarak Mohamed Mostafa Prof. Emeritus of Agric. Engineering, Faculty of Agriculture, Air Shams University.
Dr. Mahmoud Ahmed Mohamed El-nono
Dr. Moustafa Fahim Mohamed Abdel-Salam

Date of Examination: / / 2015

ACKNOWLEDGEMENT

The author wishes to express his deepest gratitude to Dr. Mostafa Fahem Mohamed Abdel-Salam, Associate Prof. of Agric. Eng. department of Agricultural Engineering, Faculty of Agric., Ain Shams Univ., for suggesting the problem, sincere encouragement of the manuscript and constructive help thought the study.

Also, I would like to express My sincere gratitude to Dr. Mohameud Ahmed Mohamed El-Nono Professor of Agric. Eng., Agric. Eng. Dept., Fac. Of Agric., Ain Shams Univ., for his kind help, great efforts during preparation of this thesis.

Finally, I would like to express my deepest appreciation to my mother, father, wife and all members of my family for their support during my study.

ABSTRACT

Saber Saad Mahmod Megahed: Energy Required for Cutting Operation of some Field Crop Residues. Unpublished M.Sc. thesis, Department of Agricultural Engineering, Faculty of Agric., Ain Shams University, 2015.

The performance of an experimental crop residues cutting machine has been investigated in this work in order to evaluate the energy requirements for cutting operation of three different crop residues (cotton stalks, corn stalks, and rice straw). The effect of cutting drum speed, knife edge angle and clearance distance on the machine productivity, fuel consumption, required power, specific consumed energy, cutting efficiency and the economical costs at optimum machine operation were, also, studied. The machine evaluated at five cutting drum speeds 1200, 1300, 1400, 1500 and 1600 rpm (8.29, 8.98, 9.68, 10.37 and 11.06 m/s); five knife edge angles (20°, 25°, 30°, 35° and 40°); and five clearance distance (1, 2, 3, 4 and 5mm). The results showed that the maximum cutting efficiency for cotton stalks (20.56% M_{cwb}), corn stalks (25.64% M_{cwb}), and rice straw (14.8% M_{cwb}) were 67.7%, 47.59,% and 62.75%, respectively, at 1600 rpm cutting drum speed, 20°knife edge angle, and 1mm clearance distance.

Key Words: Cutting machine; crop residues; energy requirements; cutting efficiency.

CONTENTS

	Page
1- INTRODUCTION	1
2- REVIEW OF LITERATURES	3
3- MATERIALS AND METHODS	10
3-1- Crop residues cutting machine	10
3-1-a- Engine	11
3-1-b- A rotary cutter drum	11
3-1-c- Knives	11
3-1-d- A stationary countershear	12
3-1-e. Power transmission.	12
3-2- Moisture content of the crop residues	12
3-3- The machine productivity	12
3-4- Fuel consumption	13
3-5- Power requirements	13
3-6- Specific consumed energy	14
3-7- Cutting efficiency	14
3-8- Cost estimation	15
4. RESULTS AND DISCUSSION	16
4-1- Cotton Stalks	16
4-1-1- Machine Productivity	16
4-1-2-Fuel consumption	18
4-1-3- The required power	21
4-1-4- The specific consumed energy	23
4-1-5- Cutting efficiency	26
4-1-6- Cost estimation	29
4-2- Corn stalks	30
4-2-1- Machine productivity	30
4-2-2- Fuel consumption	32
4-2-3- The required power	35
4-2-4- The Specific consumed energy	38
4-2-5- Cutting efficiency	41

	Page
4-2-6- Cost estimation	43
4-3- Rice stalks	44
4-3-1- Machine productivity	44
4-3-2- Fuel consumption	47
4-3-3- The required power	50
4-3-4- The specific consumed energy	53
4-3-5- Cutting efficiency	56
4-3-6- Cost estimation	59
5- SUMMARY AND CONCLUSION	60
6- REFRENCES	61
7- APPENDIX	65
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Max. and Min. rate of machine productivity for	
	cotton stalks	16
2	Max. and Min. rate of fuel consumption for cotton	
	stalks.	19
3	Max. and Min. required power for cotton stalks	21
4	Max. and Min. specific consumed energy for cotton	
	stalks.	24
5	Max. and Min. cutting efficiency for cotton stalks.	27
6	Max. and Min. rate of machine productivity for corn	
	stalks.	30
7	Max. and Min. rate of fuel consumption for corn	
	stalks.	33
8	Max. and Min. required power for corn stalks.	35
9	Max. and Min. specific consumed energy for corn	
	stalks.	38
10	Max. and Min. cutting efficiency for corn stalks.	41
11	Max. and Min. rate of machine productivity for rice	
	stalks.	44
12	Max. and Min. rate of fuel consumption for rice	
	stalks.	47
13	Max. and Min. required power for rice stalks	50
14	Max. and Min. specific consumed energy for Rice	
	stalks.	53
15	Max. and Min. cutting efficiency for rice stalks	56

LIST OF FIGURES

Fig.		Page
1	Schematic diagram of crop residues cutting	
	machine.	10
2	Photograph of crop residues cutting machine	11
3	Machine productivity as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30° , 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 20.56% M_{cwb} for cotton stalks	18
4	Fuel consumption as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30° , 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 20.56% M _{cwb} for cotton stalks	21
5	The required power as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30°, 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 20.56% M _{cwb} for cotton stalks	23
6	The specific consumed energy as a function of	
	cutting drum speed at different (A) knife edge angle	
	(20°, 25°, 30°, 35° and 40°), (C) clearance distance	
	(1,2,3,4, and 5mm), and 20.56% M _{cwb} for cotton	
	stalks.	26
7	Cutting efficiency as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30°, 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 20.56% M _{cwb} for cotton stalks	29
8	Machine productivity as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30°, 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 25.64% M _{cwb} for corn stalks	32
9	Fuel consumption as a function of cutting drum	32
_	raci consumption as a function of cutting ditum	

Fig.		Page
	speed at different (A) knife edge angle (20°, 25°,	
	30° , 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 25.64% M _{cwb} for corn stalks	35
10	The required power as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30° , 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 25.64% M _{cwb} for corn stalks	37
11	The specific consumed energy as a function of	
	cutting drum speed at different (A) knife edge angle	
	(20°, 25°, 30°, 35° and 40°), (C) clearance distance	
	$(1,2,3,4, \text{ and } 5\text{mm}), \text{ and } 25.64\% M_{cwb} \text{ for corn}$	
	stalks.	40
12	Cutting efficiency as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30° , 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 25.64% M _{cwb} for corn stalks	43
13	Machine productivity as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30° , 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 14.8% M _{cwb} for rice stalks	46
14	Fuel consumption as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30° , 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 14.8% M _{cwb} for rice stalks	49
15	The required power as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30° , 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 14.8% M _{cwb} for rice stalks	52
16	The specific consumed energy as a function of	
	cutting drum speed at different (A) knife edge angle	

Fig.		Page
	(20°, 25°, 30°, 35° and 40°), (C) clearance distance	
	$(1,2,3,4, \text{ and } 5\text{mm})$, and 14.8% M_{cwb} for rice stalks.	55
17	Cutting efficiency as a function of cutting drum	
	speed at different (A) knife edge angle (20°, 25°,	
	30°, 35° and 40°), (C) clearance distance (1,2,3,4,	
	and 5mm), and 14.8% M _{cwb} for rice stalks	58

1. INTRODUCTION

Field crop residues are organic materials which are produced by products from harvesting and processing of agricultural crops. They include all agricultural waste of common crops such as cotton, wheat, corn or maize and rice.

Large quantities of crop residues are produced annually in Egypt. They reached about 18.7 million ton per year and the national income might be increased with 1.6 billion LE/year if we try to recycle it (El-Berry et. al., 2001 and Awady et. al. 2001, cited by El-Hanfy and **Shalby,2009).** The area of cotton crop cultivation produced about 9% of the total amount of the crop residues per year. And, the total cultivated area of rice is approximately 1.46 million feddan which is considered one of the most widely cultivated cereal crops in Egypt. It is produced about 3.28 million tons of rice straw per year according to the Ministry of Agriculture and land Reclamation, 2006. Consequently, the increase of field crop residues will cause a serious problem facing the agricultural producers because they are burnt or left to decompose, but most of these current practices are not working well because of wasting time, money, energy, and polluting the environment; However, there are many efficient and simplest methods of using the field crop residues, and all of these methods depend on the cutting process which may be chopping or shredding of the field crop residues for size reduction to be suitable for various uses such as food for farm animals, compost to substitute the chemical fertilizers and improve the agricultural soil, traditional source of domestic fuel in rural areas, and it can, also, be used in manufacturing. Taiab and Imbabi (1995) proved that the cutting energy and force requirements increased with increasing the stem diameter. Habib et al. (2002) found that the predominant parameters affecting the cutting process performance of agricultural material were related to the cutting tool, machine specifications and plant material properties. Suliman et. al.(2010) studied some engineering factors concerning the performance of the affecting tool in crop residues shredder. Their results indicated that cutting drum speed, knife edge angle, and clearance distance are affected the cutting efficiency, fuel consumption and the shredder production. They, also, mentioned that the proper selection of new material leads to decrease the sharp edge angle of modified knives to 20° degree without deformation.

The present work aims to investigate and evaluate the performance of an experimental crop residues cutting machine that is owned by the Arid Land and Agricultural Research and Services Center, Faculty of Agricultural, Ain Shams University to determine the energy requirements for cutting operation of three different crop residues which are cotton stalks, corn stalks and rice straw. It also discusses:

- 1- The effect of cutting drum speed, knife edge angle and clearance distance on machine productivity, fuel consumption, required power, specific consumed energy and cutting efficiency.
- 2- The economical costs at optimum machine operation.

1. INTRODUCTION

Field crop residues are organic materials which are produced by products from harvesting and processing of agricultural crops. They include all agricultural waste of common crops such as cotton, wheat, corn or maize and rice.

Large quantities of crop residues are produced annually in Egypt. They reached about 18.7 million ton per year and the national income might be increased with 1.6 billion LE/year if we try to recycle it (El-Berry et. al., 2001 and Awady et. al. 2001, cited by El-Hanfy and **Shalby,2009).** The area of cotton crop cultivation produced about 9% of the total amount of the crop residues per year. And, the total cultivated area of rice is approximately 1.46 million feddan which is considered one of the most widely cultivated cereal crops in Egypt. It is produced about 3.28 million tons of rice straw per year according to the Ministry of Agriculture and land Reclamation, 2006. Consequently, the increase of field crop residues will cause a serious problem facing the agricultural producers because they are burnt or left to decompose, but most of these current practices are not working well because of wasting time, money, energy, and polluting the environment; However, there are many efficient and simplest methods of using the field crop residues, and all of these methods depend on the cutting process which may be chopping or shredding of the field crop residues for size reduction to be suitable for various uses such as food for farm animals, compost to substitute the chemical fertilizers and improve the agricultural soil, traditional source of domestic fuel in rural areas, and it can, also, be used in manufacturing. Taiab and Imbabi (1995) proved that the cutting energy and force requirements increased with increasing the stem diameter. Habib et al. (2002) found that the predominant parameters affecting the cutting process performance of agricultural material were related to the cutting tool, machine specifications and plant material properties. Suliman et. al.(2010) studied some engineering factors concerning the performance of the affecting tool in crop residues shredder. Their results indicated that cutting drum speed, knife edge angle, and clearance distance are affected the cutting efficiency, fuel consumption and the shredder production. They, also, mentioned that the proper selection of new material leads to decrease the sharp edge angle of modified knives to 20° degree without deformation.

The present work aims to investigate and evaluate the performance of an experimental crop residues cutting machine that is owned by the Arid Land and Agricultural Research and Services Center, Faculty of Agricultural, Ain Shams University to determine the energy requirements for cutting operation of three different crop residues which are cotton stalks, corn stalks and rice straw. It also discusses:

- 3- The effect of cutting drum speed, knife edge angle and clearance distance on machine productivity, fuel consumption, required power, specific consumed energy and cutting efficiency.
- 4- The economical costs at optimum machine operation.