HUMAN IMMUNODEFICIENCY VIRUS AND ADULT LYMPHOMA IN EGYPT

Thesis submitted for partial fulfillment of the Master Degree in Internal Medicine

616.378 T.M.

Presented By

Tamer Mohamed Ahmed

Under the supervision of

Prof. Dr. Omar Fathy Mohamed Fathy

Professor of Internal Medicine & Head of Clinical Haematology UnIT Taculty of Medicine - Ain Shams University

Prof. Dr. Inas Ahmed Hassan Asfour

Professor of Internal Medicine & Clinical Haematology Faculty of Medicine - Ain Shams University

Prof. Dr. Salwa Mohamed Abou EL-Hana

Assistant Professorof Clinical Pathology Faculty of Wodicino - Ain Shams University

> Faculty of Medicine Ain Shams University 1998

LIST OF TABLES

Table (1)	Genetic lesions in AIDS related Non-Hodgkin's	Page 32
- 11012 (17)	Lymphoma	32
Table (2)	Extranodal involvement in AIDS related NHL	34
Table (3)	Low dose m- BACOD	37
Table (4)	Symptoms and signs of primary CNS Lymphoma in AIDS patients	44
Table (5)	Radiographic features of PCNSL in AIDS patients studied by the CT scan	45
Table (6)	Association between nonrandom chromosomal aberrations and histology subgroups of non-Hodgkin's lymphoma	56
Table (7)	A clinical classification of non-Hodgkin's lymphomas for therapeutic purposes	58
Table (8)	Ann Arbor staging classfication for non- Hodgkin's lymphoma	58
Table (9)	Histologic Classification of Lymphoid Leukemias and Non-Hodgkin's Lymphoma	59
Table (10)	International index (prognostic factors in diffuse aggressive lymphoma	60
<i>Table (11)</i>	Hodgkin's disease staging classification	66
<i>Table (12)</i>	Serologic findings in CD ₃ + LGL leukemia	82
Table (13)	Clinical features of CD ₃ + LGL leukemia	82
Table (14)	Associated comorbid conditions in CD ₃ + LGL leukemia	83
<i>Table (15)</i>	Differential diagnosis of T-LGL leukemia	83
Table (16)	Clinical and Biological features of CD ₃ - NK LGL leukemia	85
Table (17)	The number and % of the lymphoma cases as regards the stage	102
Table (18)	Comparison between cases and control as regards CD4% using student "t" test	102
Table (19)	Comparison between cases and control as regards CD8% using student "t" test	103

Table (20)	Comparison between cases and control as regards	103
Table (21)	CD4/CD8 using student "t" test Comparison between the studied groups using	104
11010 (21)	one way analysis of variance ANOVA "F" test as	• (7)
	regards CD ₄	
Table (22)	Comparison between the studied groups using	104
	one way analysis of variance ANOVA "F" test as	
	regards CD ₈ %.	
Table (23)	Comparison between the studied groups using	105
	one way analysis of variance ANOVA "I" test as	
	regards CD ₄ /CD ₈	
Table (24)	Comparison between the studied groups using	105
	one way analysis of variance ANOVA "F" test as	
m I.I. (2.5)	regards total leucocytic count	106
Table (25)	Comparison between the studied groups using	106
	one way analysis of variance ANOVA "F" test as regards CD ₄ count	
Table (26)	Comparison between the studied groups using	106
111016 (20)	one way analysis of variance ANOVA "F" test as	100
	regards CD ₈ count	
Table (27)	The No. of cases +ve and -ve in HCV	107
Table (28)	The CBC, blood chemistry, iron study, protein	117
, ,	electrophooresis in the patient group	
Table (29)	The tumor volume, radiological study,	121
	echocardiography and pulmonary function tests	
	in the patient group	
Table (30)	The pathological type, staging, HBV-antibodies,	126
	HCV-antibodies, IIIV-antibodies	
M 11 /07)	in the patient group	129
Table (31)	The CD ₄ %, CD ₈ %, CD4/CD8 Ratio,	129
	Lymphocytic count/μL, CD ₄ count/μL, CD ₈	
	count/µL, Immunophenotypic panel, Monospot	
Table (22)	test in the patient group CD ₄ %, CD ₈ %, CD4/CD ₈ Ratio, HIV-antibodies	131
Table (32)		131
	in the control group	

LIST OF FIGURES

Figure (1)	l American de la companion	Page
rigure (1)	Approach to the diagnosis and treatment of a cerebral mass lesion in a patient with HIV	47
Figure (2)	Components of the floweytometry	
Figure (3)	Human T cell maturation sCD3 surface cD3	68
	expression; cCD3, cytoplasmic CD3 expression	70
Figure (4)	Antigen independent human B lymphocyte maturations	72
Figure (5)		
- ,,	leukemia	89
Figure (6)	Monoparametric representations (Number of	99
	cells versus fluorescence intensity of a total blood	
	sample of a healthy subject after marking with	
Figure (7)	CD4-PE (R phycoerythrine) & lysis of RBCs.	
8 (1/)	Representing distributions of the differential forms	132
Figure (8)	of lymphoma among the examined group. Mean values of CD ₈ count in low grade NHL =	
	group 1, intermediate grade NHL = group 2,	132
	high grade NHL group 3, Hodgkin's disease =	
	group 4	
Figure (9)	Mean values of CD ₄ /CD ₈ count in low grade	133
	INFIL = group 1, intermediate grade NIHI =	133
	group 2, high grade NHL group 3. Hodgkin's	
Eimen (10)	disease = group 4	
Figure (10)	Mean values of CD ₄ count in low grade NHL =	133
	group 1, intermediate grade NHL = group 2	
	ingli grade NHL group 3, Hodgkin's disease =	
Figure (14)	group 4	
Figure (12)	Represents CD ₄ count in the patient group	134
	Represents the distribution of the patients among the age groups	134

CONTENTS

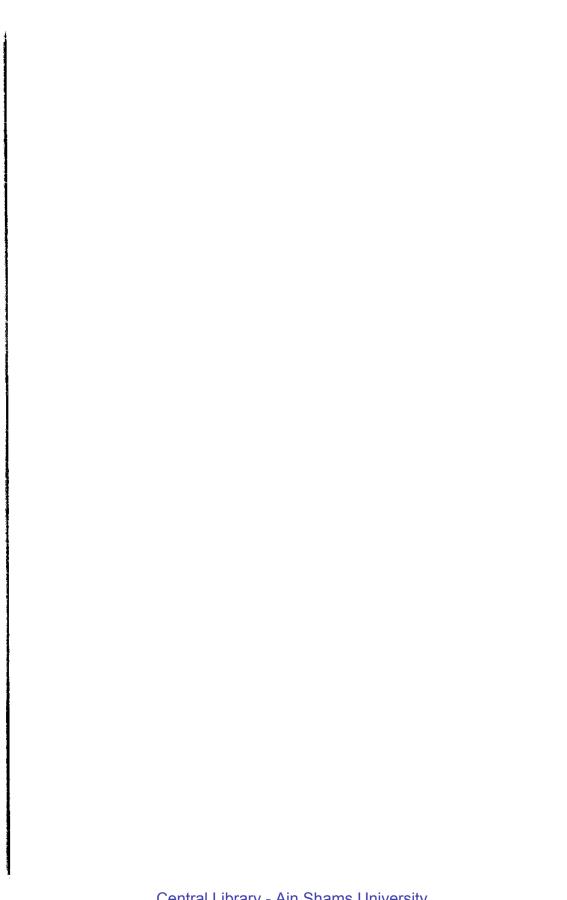
	Page
⇒Introduction	1
⇒Aim of the work	2
⇒Review of literature	3
• HIV	4
 HIV associated lymphoma 	18
 Non-Hodgkin's lymphoma 	56
 Hodgkin's disease 	61
• Flow cytometry	67
⇒Patients and methods	93
⇒Results	101
⇒Discussion	109
⇒Conclusion	114
⇒Recommendation	114
⇒Summary	115
⇒Appendix	117
⇒References	135
⇒Arabic summary	

Acknowledgment

First and foremost, I thank God who gave me the strength to fulfill this work. I would like to thank *Prof. Dr. Omar Fathy*, Professor of internal Medicine and Clinical Haematology, Ain Shams University, for his experienced guidance and continuos encouragement.

I wish to thank *Prof. Dr. Inas Asfour*, Professor of internal Medicine and Clinical Haematology, Ain Shams University for her great effort and close supervision and her unlimited support and help in this work.

I am also grateful to **Dr. Salwa M. Abou EL-Hana** Assistant Professorof Clinical Pathology Faculty of Medicine - Ain Shams University, for her supervision and her advise.


Tamer M. Ahmed

Introduction & Aim of The work

INTRODUCTION

There is now an increasing evidence that many lymphoproliferative disorders can be related to infectious viruses, such as Epstien Barr virus in Burkitt's lymphoma (Shiramizu et al, 1991) and Hodgkin's disease (Brousset et al, 1993), HTLV-1 in T-cell Leukemia/Lymphoma (Gallo, 1991).

On the basis of recent epidemiological observation, a fraction of lowgrade NHL also seems to be related to a viral infection. In fact, the group of immunocytoma is closely associated with HCV (Mazzaro et al, 1996). Thus the possibility of preventing the transmission invokes new treatment strategies for hematological malignancies.

Acquired immunodeficiency syndrome-related lymphoma is a serious opportunistic complication of human immunodeficiency virus (HIV) infection which is predicted to increase in frequency over the next few years.

The presence of this malignant process in HIV-related individuals, who are already immunocompromised constitutes a major cause of morbidity and mortality, determining both therapy and prognosis (Denton et al, 1996).

The incidence of non-Hodgkin's lymphoma (NHL) is greatly

aggressive B-cell-derived neoplasms exhibiting Burkitt's lymphoma (BL) or large cell lymphoma (LCL) histology. Approximately 80% arise systemically (nodal and/or extra-nodal) and the remaining 20% arise as primary CNS lymphomas (Knowles, 1996). Possible factors contributing to lymphoma development include HIV-induced immunosuppression, chronic antigenic stimulation and cytokine overproduction; overexpression of the cytokine interleukin-6 and interleukin-10 may have a role in the pathogenesis (Sandler and Kaplan, 1996).

AIDS-related NHL remains an important biologic model for investigating the development and progression of high-grade NHL as well as NHL's that develop in immune-deficient hosts.

AIM OF THE WORK

The aim of this study is to investigate for the presence of HIV infection among newly diagnosed Egyptian Lymphoma Patients at presentation.

Their immunological status represented by estimating CD₄/CD₈ ratio will be determined as well.