

FOOD LEGEN

62

KHALED ESMAIL ABD

B. Sc. (Food Science and Technology)
Faculty of Agriculture, Ain Shams University, 1980

A thesis submitted in partial fulfillment Of the requirements for the degree of

56416

MASTER OF SCIENCE In

"Food Science and Technology"

Department of Food Science Faculty of Agriculture Ain Shams University

1999

A company

QUALITY EVALUATION OF SOME FOOD LEGUMES

By

KHALED ESMAIL ABD EL-SALAM AHMED

B. Sc. (Food Science and Technology)
Faculty of Agriculture, Ain Shams University, 1980

Under the supervision of:

Prof. Dr. Mamdouh H.O. El-Kalyoubi
Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University.

Dr. Gamal, A.A. El-Shatanovi

Assoc. Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University

Dr. Yosry A.A. Soliman

Assoc. Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University

Date: / /1999

Approval Sheet

QUALITY EVALUATION OF SOME FOOD LEGUMES

By

KHALED ESMAIL ABD EL-SALAM AHMED

B. Sc. (Food Science and Technology)
Faculty of Agriculture, Ain Shams University, 1980

This thesis for M.Sc. degree has been approved by:

Prof. Dr. Ferial A. Ismail

Prof. of Food Technology, Chairman of Food Technology Dept., Faculty of Agric., Cairo University.

Prof. Dr. M. Amin Abdallh

Prof. of Food Sci. and Technology, Food Sci. Dept., Fac. of Agric., Ain Shams University.,

Previous Dean of the Faculty of Specific Education,

Ain Shams University.

Prof. M.H. El-Kalyoubi

Prof. of Food Sci. and Technology, Food Sci. Dept., Fac. of Agric., Ain Shams University.

Date of examination: / /1999

A Company

ABSTRACT

Khaled Esmail Abdel-Salam Ahmed. Quality Evaluation of Some Food Legumes. Unpublished Master of Science. Ain Shams University, Faculty of Agriculture, Department of Food Science, 1999.

Four food legumes; kidney bean; cowpea; faba bean and lentil from different growing location obtained by the General Organization for Export and Import Control, Cairo, Egypt, were subjected to evaluation in comparing with the Egyptian cultivars for proximate composition, physical characteristics, heavy metals, insecticide residues and antinutritional factors content. On the other hand, the effect of soaking process in different soaking media (i.e., tap water, 0.5% sodium bicarbonate and 1% acetic acids solutions) on cooking quality as well as hydration kinetics at different soaking temperatures, were also studied. Significant variations in proximate composition in such legumes samples among the growing locations were found. Same observations were obtained for the physical properties and heavy metal content of raw seeds. Slight differences in seed coat percentages between the located samples of each legume crops. Contamination of studied raw seeds differed and varied depending on the type of legumes and location, however, mean concentrations of detected residues were below the permissible levels proposed by the maximum residues limits of codex.

Soaking in sodium bicarbonate increased the hydration characteristics, reduction rate of water soluble materials and reduction of antinutritional factors, however, cooking time was decreased significantly compared with the other soaking treatments. Generally, sodium bicarbonate and tap water are suitable medium for legume soaking to improve the cooking quality parameters and nutritive values of our studied legumes.

The activation energy of temperature dependence of hydration rate constant were in the range of 20 to 30 Kj/mol, for the legume seeds of higher hydration rates, and 4.65 to 17.43 Kj/mol for seeds of moderate and low hydration rate constant.

Key words: Food legumes, chemical proximate composition, physical characteristics, heavy metals, insecticide residues, soaking, hydration, cooking quality, antinutritional factors, tannins, trypsin inhibitors, phenolics, compounds.

ACKNOWLEDGMENT

Praise and thanks be to ALLAH, the most merciful for assisting and directing me to the right way

Sincere gratitude to **Prof. Dr. M.H.O. El-Kalyoubi,** Prof. of Food Sci., and Tech., Fac. Agric., Ain Shams Univ., for his continuous supervision, kind help and valuable comments through the course of this study.

My great appreciation and thanks to Dr. G.A. El-Shatanovi, Assoc. Prof. Food Sci. and Tech., Fac. Agric., Ain Shams Univ., for his supervision and help fulness during this work.

The auther expresses his thanks to **Dr. Y.A.A. Soliman**, Assoc. Prof. Food Sci. and Tech., Fac. Agric., Ain Shams Univ., for his supervision.

I am quite obliged to **Dr. Y.A.** Heikal, Assoc. Prof. Food Sci. and Tech., Fac. Agric., Ain Shams Univ., for his guidance and assistance during the discussion of the hydration kinetics of this work.

I would like to offer my gratitude to the General Organization for Export and Import Control, for thevery kind help and encouragement.

CONTENTS

	Page
LIST OF ABREVIATION	
LIST OF TABLES	
LIST OF FIGURES	
I. INTRODUCTION	
2. REVIEW OF LITERATURE	1
2.1. The physical characteristics of legumes	6
2.2. Chemical proximate of some legumes	8
2.3. Detection of insecticide residues and their	
metabolities in legumes	11
2.4. Food legumes characteristics as affected by	
technological processes	14
2.4.1. Soaking	14
2.4.2. Germination	17
2.4.3. Thermal processing and cooking	18
2.5. Effect of processing on some antinutritional	
factors in food legumes	21
2.5.1. Tannins	21
2.5.2. Trypsin inhibitor	22
2.6. Factors affecting the cooking quality of food	
legumes	24
3. MATERIALS AND METHODS	27
	27 27
3.1. MATERIALS	
3.2. METHODS	28
3.2.1. Technological treatments	28
3.2.1.1. Soaking	28
	28
legumes	
3.2.2. Methods of analysis	29
3.2.2.1. Physical properties	29

	Page
3.2.2.1.1. Weight and volume of 1000-	
seeds	29
3.2.2.1.2. Relative density of seeds	29
3.2.2.1.3. Seed dimensions	29
3.2.2.1.4. Percentage of seed coat	29
3.2.2.1.5. Hydration coefficient	30
3.2.2.1.6. Swelling coefficient	30
3.2.2.1.7. Dispersed solids	31
3.2.2.1.8. Cooking time	31
3.2.2.2. Chemical proximate	31
3.2.2.3. Determination of heavy metals	31
3.2.2.4.Determination of insecticide residues	31
3.2.2.5. Antinutritional factors	35
3.2.2.5.1. Trypsin inhibitor	35
3.2.2.5.2. Tannin	36
3.2.2.5.3. Phenolic compounds	37
3.2.2.6. Statistical analysis	37
4. RESULTS AND DISCUSSION	38
4.1. Physical properties of some Egyptian and im-	
ported legumes	38
4.2. Chemical composition of some Egyptian and	
imported legumes	44
4.3. Heavy metals content of some Egyptian and	
imported legumes	47
4.4. Characteristic levels of some insecticide resi-	
dues in some food legumes	50
4.4.1. Organochlorine insecticide residues	50
4.4.2. Organophosphorus carbonate and pyri-	
throide residues	53
4.5. Legumes quality as affected by soaking treat-	
ments	55
4.5.1. Hydration	55
4.5.2. Swelling	66

	Page
4.5.3. Cooking time	75
4.6. Effect of soaking process on the water soluble	
materials	92
4.7. Hydration characteristic of legumes	100
4.7.1. The general description of hydration	
curves	100
4.7.2. Kinetic of legume seeds hydration	109
4.7.3. Activation energy of hydration	115
4.8. Effect of soaking on some antinutritional fac	
tors content	119
4.8.1. Trypsin inhibitor	119
4.8.2. Tannins	125
4.8.3. Phenolic compounds	131
5. SUMMARY	140
CONCLUSION	147
6. REFERENCES	148
7. ARABIC SUMMARY	

