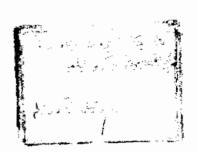
ECOLOGICAL AND EPIDEMIOLOGICAL STUDIES ON BACTERIAL BLIGHT DISEASE OF PEAR

Ву

NAGY YASSIN ABD EL-GHAFAR


A thesis submitted in partial fulfilment of the requirement for the degree of

Doctor of Philosophy

Tn

Agriculture Science (Plant Pathology)

Department of Plant Pathology

Faculty of Agriculture

Ain Shams University

47951

₹32.32 ₩.¥

1994

ECOLOGICAL AND EPIDEMIOLOGICAL STUDIES ON BACTERIAL BLIGHT DISEASE OF PEAR

Ву

NAGY YASSIN ABD EL-GHAFAR

- B. Sc. in Aric. (Plant Pathology), Fac. of Agric., Ain Shams University, 1981
- M.Sc. in Agric. (Plant Pathology), Fac. of Agric.,
 Ain Shams University, 1988

Under the Supervision of:

1. Prof. Dr. M.F. Hegazi

Professor and Head of the Department of Plant

Pathology, Faculty of Agriculture, Ain Shams

University.

2. Prof. Dr. W.A. Mashhoor

Professor of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

3. Dr. Nagwa A.M. Gamil

Associate Professor of Plant Pathology, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Pear bacterial blight disease caused by Erwinia amylovora (fire blight disease) and Pseudomonas syringae (pear blast

disease). The disease was found in Alexandria, Beheara and Kafr El-Shiekh Governorates, while Dakahlia and Kalubia Governorates were free from the disease. The disease was found to be in just some regions at Gharbia Governorate.

Disease severity greatly increased and the yield decreased with increasing number of cankers and infected clusters per tree, during autumn period and late blooming, especially after 20th of March.

E. amylovora and Ps. syringae were detected in all tested samples, except cankers which were free from Ps. syringae. High percentages of infected samples and high population of E. amylovora were found in cankers, which could be considered as the main source of infection in the following season. Chemical control treatments (Kocide 101 with addition of streptomycin sulfate) significantly decreased the percentage of infected samples as well as populations of the two pathogens.

A definite relationship between weather conditions and occurrence of pear bacterial blight disease in Egypt was found. Temperature was the major factor for initiation of blight epidemic. High relative humidity and rainfall were important for initial infection and dissemination of the disease.

Population of both pathogens isolated from bees and wood minors insects were relatively high as compared with those from leaf hopper and ants insects.

There was a relationship between appearance of streptomycin-resistant isolates and the number of seasons where streptomycin was included in the spray program. Using Kocoide

101 with addition of streptomyhcin sulfate in the spray program greatly decreased the appearance of streptomycin-resistant isolates. Combination between chemical control treatments and fertilizers (organic and mineral) greatly decreased the severity of bacterial blight disease and increased yield of pear.

Total sugars and amino acids content of the infected tissues decreased, while total phenols increased as compared with healthy tissues. Flowers and immature fruits of pear were susceptible to bacterial blight disease, due to the high amounts of total amino acids and low amounts of total sugars and phenols. Meanwhile, mature fruits were resistant to the disease, due to the decreasing in amounts of total amino acids and the high amounts of total sugars and phenols.

Phenolic compounds inhibited the growth of both pathogens and capsule formation of *E. amylovora*. However, some sugars and amino acids increased the growth of both pathogens and stimulated capsule formation of *E. amylovora*.

KEY WORDS

- The theoretical development period (D)
- Potential bacterial blight activity (PBA)
- Potential doublings (PD)
- Extracellular polysaccharids (EPS)
- Colony forming unites (CFU)
- Nutrient agar meldium (NA)
- Nutrient broth medium (NB)
- Kado and Heskett medium (D3)
- King's medium B (KBA)
- Sterile distilled water (SDW)
- Streptomycin resistant strains (Strr)
- Streptomycin sensitive strains (strs)
- Ammonium niitrate (N)
- Calcium superphosphate (P)
- Potassium sulfate (K)
- NPK-mixture

ACKNOWLEDGEMENT

I wish to express my deep gratitude and many thanks to Professor Dr. M.F. Hegazi, Professor and Head of the Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Prof. Dr. W.A. Mashhoor, Prof. of Agricultural Microbiology, Fac. of Agrc., Ain Shams Univ. and Dr. Nagwa A.M. Gamil, Associate Prof. of Plant Pathology, Fac. of Agric., Ain Shams University for their supervision and valuable guidance during this investigation.

Sincere appreciation, many thanks and indebtedness would be expressed for Prof. Dr. M.M. El-Zayat Prof. of Plant Pathology, Fac. of Agric., Ain Shams Univ., for his kind help, unfailing encouragement, continuous advices during his supervision before leaving the department for his work in F.A.O.

It is my privilege to express my personal acknowledgements to all staff-members and colleagues at the Department of Plant Pathology, Fac. of Agric., Ain Shams University.

CONTENTS

				<u>Page</u>
1.	INTR	ODUCTIO	ON	1
2.	REVI	EW OF L	ITERATURE	4
	2.1.	Predic	tive system of bacterial blight of pear.	
	2.2.	Resist	ance of E. amylovora and Ps. syringae to	
		strept	omycin	12
	2.3.	Effect	of different fertilizers under field	
		condit	ions	15
	2.4.	Bioche	mical changes associated with bacterial	
		blight	disease of pear	17
3.	MATE	RIALS A	ND METHODS	20
	3.1.	Disease	e survey and sample collection	20
	3.2.	Isolat	ion and identification of the causal	
		organia	sms	20
	3.3.	Predic	tive system of bacterial blight of pear.	
		3.3.1.	Effect of pre-blooming infection on	
			severity of bacterial blight in the	
			next spring blooming	20
		3.3.2.	Effect of date of blooming and infect-	
			ion on severity of bacterial blight	
			disease	21
		3.3.3.	Monitoring of E. amylovora and Ps.syring	ae
			population on pear in relation to diseas	e
			incidence	21

<u>Page</u>

		3.3.4. Survival of E. amylovora and Ps. syringae	
		in infected tissues	22
		3.3.5. Effect of ecological factors on disease	
		s everity 2	23
		3.3.6. The role of insects in disease transmis-	
		sion 2	25
	3.4.	Resistance of E. amylovora and Ps. syringae to	
		streptomycin 2	26
	3.5.	Effect of different fertilizers under field	
		conditions 2	28
	3.6.	Biochemical changes associated with bacterial	
		blight of pear:-	
		3.6.1. Extraction of plant samples 2	8
		3.6.2. Quantitative analysis of sugars 3	0
		3.6.3. Determination of phenolic compounds 3	0
		3.6.4. Total amino acids determination 3	0
	3.7.	Effect of certain compounds on growth of	
		bacterial blight pathogens and capsule format-	
		ion of E. amylovora in vitro 3	0
	3.8.	Statistical analysis 3	1
	3.9.	The media used in this investigation 3	2
4.	RESU	TS AND DISCUSSION	4
	4.1.	Disease survey	4
	4.2.	Isolation and identification of the causal	
		organisms 3	4

			<u>Page</u>
4.3.	Predic	tive system of bacterial blight disease	
	of pea	r:-	
	4.3.1.	Effect of pre-blooming infection on	
		disease severity and the yield in the	
		next spring blooming	37
	4.3.2.	Effect of date of blooming and infect-	
		ion appearance on disease severity and	
		the yield	44
	4.3.3.	Monitoring of E. amylovora and Ps.	
		syringae population on pear in relation	
		to the disease occurrence	48
	4.3.4.	Survival of E. amylovora and Ps.syringae	
		in infected tissues	60
	4.3.5.	Effect of ecological factors on disease	
		severity	67
	4.3.6.	The role of insects in disease trans-	
		mission	72
4.4.	Resista	ance of E. amylovora and Ps. syringae to	
	strepto	omycin	73
4.5.	Effect	of different fertilizers on disease	
	severit	y under field conditions	77
1.6.	Biochem	nical changes in pear trees associated	
	with ba	cterial blight disease	83

	<u>Page</u>
4.7. Effect of certain compounds on growth of	
bacterial blight pathogens and capsule	
formation of E. amylovora, in vitro	86
5. SUMMARY	91
6. REFERENCES	98
7. ARABIC SUMMARY	

LIST OF TABLES

	<u>Pa</u>	ge
1.	. Estimation of potential doublings (PD) per day	
	from daily maximum and minimum temperature	
	(Billing, 1980)	24
2.	Worked example of calculations of theoretical	
	development (D) period (Billing, 1980)	24
з.	Time of apploication and amount of fertilizers	
	added per tree (Kg)	29
4.	Survey of bacterial blight disease of pear in	
	various orchards throughout the Nile Delta	
	regions of Egypt, 1990 season	35
5.	Effect of pre-blooming cankers on disease severity	У
	and the yield in the next spring blooming, in dif	-
	ferent localities	38
6.	Effect of infection of autumn blooming on disease	
	severity and the yield in the next spring bloom-	
	ing, in different localities	41
7.	Effect of date of blooming and infection appea-	
	rance on disease severity and the yield, at	
	Kubaneyat Abo-Kear (Beheara) and Kafr El-Zayat	
	(Gharbia) areas	46
8.	Monitoring of E. amylovora (E) and Ps. syringae	
	(P) population on cankers, in certain orchards,	

		<u>Page</u>
at Kubaneyat Abo-Kear (Behear	a), in 1990 and	
1991 seasons. (count X 105)		49
9. Monitoring of E. amylovora (E) and Ps. syringae (P)	
population on cankers, in cer	tain orchards, at Kafr	
El-Zayat (Gharbia), in 1990 a	nd 1991 seasons	
(count X10 ⁵)		50
10.Monitoring of E. amylovora (E	and Ps. syringae (P)	
population on flowers, in cer	tain orchards, at	
Kubaneyat Abo-Kear (Beheara),	in 1990 and 1991	
seasons (count X104)	• • • • • • • • • • • • • • • • • • • •	51
11. Monitoring of E. amylovora (E) and Ps. syringae (P)
population on flowers, in ce	rtain orchards, at	
Kafr El-Zayat (Gharbia), in	1990 and 1991	
seasons (count X104)		52
12. Monitoring of E. amylovora	(E) and Ps. syringae ()	P)
population on fruits, in ce	rtain orchards, at	
Kubaneyat Abo-Kear (Beheara), in 1990 and 1991	
seasons (count X104)		53
13. Monitoring of E. amylovora (E) and Ps. syringae (P))
population on fruits, in cer	tain orchards, at	
Kafr El-Zayat (Gharbia), in 1	1990 and 1991	
seasons (count X104)		54
14. Monitoring of E. amylovora (1) and Ps. syringae (P)	
population on leaves, in cert	ain orchards, at	
Kubaneyat Abo-Kear (Beheara)	in 1990 and 1991	
seasons		55

Page

15.	Monitoring of E. amylovora (E) and Ps. syringae (P)
	population on leaves, in certain orchards, at
	Kafr El-Zayat (Gharbia), in 1990 and 1991 seasons 56
16.	Survival of E. amylovora (E) and Ps. syringae (P)
	in infected tissues (cankers and flowers) of pear,
	in orchard treated with Kocide 101 with addition of
	streptomycin sulfate, at Kubaneyat Abo-Kear
	(Beheara)61
17.	Survival of E. amylovora (E) and Ps. syringae (P)
	in infected tissues (fruits and leaves) of pear,
	in orchard treated with Kocide 101 with addition
	of streptomycin sulfate, at Kubaneyat Abo-Kear
	(Beheara) 62
18.	Survival of E. amylovora (E) and Ps. syringae (P)
	in infected tissues (cankers and flowers) of pear,
	in orchard treated with streptomycin sulfate alone,
	at Kubaneyat Abo-Kear (Beheara) 63
19.	Survival of E. amylovora (E) and Ps. syringae (P)
	in infected tissues (fruits and leaves) of pear,
	in orchard treated with streptomycin sulfate alone,
	at Kubaneyat Abo-Kear (Beheara) 64
20.	Survival of E. amylovora (E) and Ps. syringae (P)
	in infected tissues (cankers and flowers) of pear,

	<u>Page</u>
	in orchard without chemical treatment, at Kubaneyat
	Abo-Kear (Beheara) 65
21.	Survival of E. amylovora (E) and Ps. syringae (P)
	in infected tissues (fruits and leaves) of pear,
	in orchard without chemical treatment, at Kubaneyat
	Abo-Kear (Beheara) 66
22.	Relation between some insects and population of
	the isolated pathogenic bacteria (E. amylovora (E)
	and Ps. syringae (P) from each, at Kubaneyat Abo-
	Kear (Beheara) 72
23.	Occurrence of streptomycin resistant E. amylovora (E)
	and Ps. syringae (P) isolates, in pear orchards in
	relation to history of streptomycin sulfate usage,
	at Kubaneyat Abo-Kear (Beheara) 74
24.	Occurrence of streptomycin resistant E. amylovora (E)
	and Ps. syringae (P) isolates, in pear orchards in
	relation to history of streptomycin sulfate usage,
	at Kafr El-Zayat (Gharbia)
25.	Effect of mineral fertilizers on severity of bacteria
	blight disease and yield of pear, at Kubaneyat Abo-
	Kear (Beheara), 1989 seasons
26.	Effect of different fertilizers and their combination
	during 1989 seasons, on severity of bacterial blight