## EFFECT OF AFLATOXIN ADMINISTRATION ON SOME PHYSIOLOGICAL ASPECTS OF THE RABBIT MAMMARY GLAND

BY
MOSAAD ATTIA ABDEL-WAHHAB

Thesis Submitted in partial fulfillment

of

the requirements for the degree of Master of Science

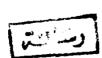
in

Agricultrue (Animal physiology)

at the

Department of Animal Production

636.9322 M. A


28346

Faculty of Agriculture

Ain-Shams University

Cairo-Egypt

1989





#### APPROVAL SHEET

-----

Effect of aflatoxin administration on some physiological aspects of the rabbit mammary gland.

By

### Mosaad Attia Abdel-Wahhab B.Sc. Animal production (1981)

This thesis for M.Sc. Degree has been approved by :

Prof. Dr. E. A. Kotby (El San ed A. Kotby)
Professor of Animal Physiology, Department of Animal Production,
Faculty of Agriculture, Ain-Shams University.

Prof. Dr. A. H. Daader ( A - H - 1) reclu )

Professor of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Zagazig University.

Prof. Dr. S. O. Amin (S; O)

Professor of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain-Shams University.

Date of examination: 14/3/1989.



### EFFECT OF AFLATOXIN ADMINISTRATION ON SOME PHYSIOLOGICAL ASPECTS OF THE RABBIT MAMMARY GLAND

Вų

#### Mosead Attie Abdel - Webbeb

Bs.C. Animal production (1981)

Under the supervision of :
Prof. Dr. S. O. Amin
Prof. of Animal Physiology AinShams University.
Prof. Dr. M. A. El-Fouly
Prof. of Animal physiology AionShams University.
Prof. Dr. Khayria M. Naguib
Prof. of Mycotoxin national research
center

#### ABSTRACT

A total of 76 female bouscat rabbits was used in this study. Animals received aflatoxin B1 (50  $\mu$ g/kg B.W.) daily during the first (group I), the second (group 2), and the third (group 3) trimester of the gestation period, while group 4 was untreated control group.

Each group was classified into two subgroups: A sacrificed immediately after the end of treatment, and B sacrificed one month after the end of treatment. In subgroup A within all treated groups, erythrocytes and haemoglobin concentrations were decreased while total leukocytes,

برما

basophils, eosinophils and monocytes percentage haematocrit value, erythrocytes sedmination rate, and coagulation time were increased

In subgroups A and B all treated animals showed an increase in liver weight, hepatic cell nuclear index and hepatic cell size. In the two subgroups aflatoxin treatment reduced mammary gland reative and absoulte weights.

Histopathological studies showed focal necrosis in the hepatic tissue in subgroup A of the treated groups, haemorrhage and deposition of haemosidrin granules. Moreover, aflatoxin treatment resulted in proliferation and hypertrophy of bile ducts and mild positive reactions with PAS stain. In subgroup B, livr tissue in most cases appeared undegenerated with increased number of binucleated cells. These subgroup showed strong reaction to PAS stain.

Histopathological studies on the mammary glands showed that aflatoxin treatment during pregnancy induced mild preliferation in acinar cells and increased amount of fibrous tissue in the stroma. Treatment during lactation period decreased alveolar cells height and the secretory activity of the alveoli. Treatment during mammary gland invoulation period resulted in an increase in the fibrous tissue and thick walled blood vessels in spaces intrelabular.

#### ACKNOWLEDGEMENTS

The author expresses his great indebtedness and sincere appreciation to **Prof. Dr. S. O. Amin,** Professor of Animal Physiology, Department of Animal production, Faculty of agriculture, Ain-Shams University, for suggesting the problem, designing the work, reading the manuscript and for her valuable criticism and patient supervision.

The author also like to express great thank to **Prof**. **Dr. M. A. El-Fouly,** Professor of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain-Shams University. For his supervision, reading the monuscript, continuous encourgement and guidance.

The author is also indebted to **Prof. Dr. Khayria M. Naguib,** Head of the Centeral Mycotoxin Laboratory, National Research Center, Cairo, for supervising the work, reading the monuscript, her advice and valuable instructions throughtout the course of the study, providing all necessary facilities required for the experimental work of the research, continuous help and encourgement.

Deep thanks are due to **Dr. Wafaa El-Sayed Abdel Aal,** Lecturer of pathology, **Na**tional Research Center. Who made her time available for discussing the histopathological part of the present work.

Sincere gratitude and thanks are expressed to the staff of the mycotoxin laboratory, National Research Center, and Department of animal production and rabbit colony of Faculty of Agriculture Ain-Shams University. For their enthusistic assistance and good spirit of cooperation.

The author is greatly indebted and grateful to his parents, his wife, and his brothers and sisters, for their good understanding blessedness, love and continuous help which made the completion of this work possible.

### CONTENTS

|                                                                   | Page     |
|-------------------------------------------------------------------|----------|
| I- Introduction                                                   | 1        |
| II- Review of literature                                          | 4        |
| 1 - Historical background of aflatoxins                           |          |
| 2- Chemical structure and properties of aflatoxins                |          |
| 3- Biological effects of aflatoxins                               |          |
| Effect of aflatoxin on liver of :                                 | , •      |
| Rabbits                                                           | 10       |
| Monkeys                                                           |          |
| Dogs                                                              |          |
| Hamsters                                                          |          |
| Rats                                                              |          |
| Rainbow                                                           |          |
| Guinea pigs                                                       |          |
| Pigs .                                                            |          |
| Ponies                                                            |          |
|                                                                   |          |
| Steers                                                            |          |
| Cattle                                                            |          |
| Goats                                                             |          |
| Duckling Charles                                                  |          |
| Chicken                                                           | 22       |
| Effect of aflatoxins on the relationship between nuclear size and |          |
| cellular activity.                                                | 23       |
| Relationship between nucleic acids and aflatoxins.                | 26       |
| Effect of aflatoxin on blood picture of :                         |          |
| Rabbits                                                           | 30       |
| Pigs                                                              | 30<br>30 |

| Pomies                                                          | 32 |
|-----------------------------------------------------------------|----|
| Chickens                                                        |    |
| Steers                                                          |    |
| Dairy calves                                                    |    |
| Goats                                                           | 35 |
| Effect of aflatoxins on mammary gland                           | 35 |
| Histology of mammary glands                                     | 36 |
| Prepubertal development                                         | 36 |
| The inactive mammary gland                                      | 39 |
| The mammary gland during pregnancy                              | 39 |
| The mammary gland during lactation                              | 40 |
| General additinal effects of aflatoxins on mammels              | 41 |
| Rebbits                                                         | 41 |
| Rats                                                            | 42 |
| Guinea pigs                                                     | 43 |
| Pigs                                                            | 43 |
| Degs                                                            | 44 |
| Cows                                                            | 45 |
| III- Material and methods                                       | 47 |
| Áflatoxin standerd                                              | 47 |
| Experimental animals.                                           | 47 |
| Reproduction                                                    | 48 |
| Hutches or cages                                                | 48 |
| Feeding and watering                                            | 49 |
| Measurments of blood picture                                    | 50 |
| Determination of RBC's and WBC's concentration in blood         | 51 |
| Determination of haematocrit value and haemogobin concentration | 51 |
| Leukocytes differentisi count                                   | 51 |
| Erythrocytes sedimentation rate                                 | 52 |
| Coagulation time                                                | 50 |

| · · · · · · · · · · · · · · · · · · ·                      |     |
|------------------------------------------------------------|-----|
| Determination of nuclear index and cell index              | 52  |
| Histopathological and histochemical studies                | 53  |
| Stastical analysis                                         | 54  |
| IY- Results and Discussion                                 | 55  |
| Haematological studies                                     | 55  |
| Enythrocytes and haemeglobin concentration                 | 55  |
| Leukocytes concentration and leukocyte differential counts | 57  |
| Erythrocytes sedimentation rate and coagulation time       | 63  |
| Haematocrit value                                          | 65  |
| Liver weight                                               | 70  |
| Nuclear index of liver cells                               | 73  |
| Cell index of liver cells                                  | 75  |
| Number of binucleated cells of liver tissue                | 76  |
| Weight of mammary gland                                    | 78  |
| Histopathological results of liver                         | 84  |
| Histochemical results of liver                             | 87  |
| Histopathological results of mammary gland                 | 98  |
| Histochemical results of mammary gland                     | 101 |
| Y- Summary                                                 | 110 |
| YI- References                                             | 115 |
| YII- Arabic summary                                        | _   |

### LIST OF TABLES

|             |                                                                                                                        | Page |
|-------------|------------------------------------------------------------------------------------------------------------------------|------|
| Table (1):  | Mean haemoglobin and enythrocytes concentration $(\pm SE)$ for aflatoxin-treated and control bouscat rabbits.          | 56   |
| Table (2) : | ANOVA for the differences in erythrocytic counts, for aflatoxin-treated and control rabbits                            | 57   |
| Table (3):  | ANOVA for the differences in haemoglobin concentration for affatoxin-treated and control rabbits                       | 57   |
| Table (4):  | Mean leukocytes concentration and leukocytes differential counts ( $\pm$ SE) for aflatoxin-treated and control rabbits | 58   |
| Table (5) : | ANCYA for the differences in leukocytes concentration for aflatoxin-treated and control rabbits                        | 60   |
| Table (6):  | ANOVA for the differences in lyumphocytes concentration for aflatoxin-treated and control rabbits                      | 61   |
| Table (7):  | ANOVA for the differences in neutrophils concentration for aflatoxin-*reated and control rabbits.                      | 61   |
| Table (8) : | ANOVA for the differences in monocytes concentration for aflatoxin-treated and control rabbits                         | 62   |
| Table (9) · | ANCYA for the differences in easinophila concentration for aflatoxin-treated and control rabbits                       | 62   |

| ************************************** | Table (10) :     | ANOYA for the differences in basophils concentration for aflatoxin-treated and control rabbits         | 63 |
|----------------------------------------|------------------|--------------------------------------------------------------------------------------------------------|----|
|                                        | Table (11) :     | Erythrocytes sedimentation rate and coagulation time for                                               | 00 |
|                                        |                  | aflatoxin-treated and control rabbits (Results are expressed                                           |    |
|                                        |                  | as means <u>+</u> SE)                                                                                  | 64 |
|                                        | Table (12) :     | ANOVA for the differences in ESR for aflatoxin-treated and control rabbits                             | 65 |
|                                        | Table (13) :     | ANOVA for the differences in coagulation time for aflatoxin-                                           |    |
|                                        |                  | treated and control rabbits                                                                            | 65 |
|                                        | Table (14) :     | Haematocrit mean values ( $\pm$ SE) for aflatoxin-treated and                                          |    |
|                                        |                  | control groups of rabbits                                                                              | 66 |
|                                        | Table (15) :     | ANOVA for the differences in haematocrit values for aflatoxin-<br>treated and control rabbits          |    |
|                                        | Table (16)       |                                                                                                        | 67 |
|                                        | repression (10). | Means $(+ SE)$ for absolute and relative liver weights in aflatoxin-treated and control female rabbits | 71 |
|                                        | Table (17) :     | ANOVA for the differences in absolute weight of liver for the                                          |    |
|                                        |                  | aflatoxin-treated and control groups of rabbits                                                        | 71 |
|                                        | Table (18):      | ANOVA for the differences in relative weight of liver for the                                          |    |
|                                        |                  | aflatoxin-treated and control groups of rabbits                                                        | 72 |
|                                        | Table (19) :     | Means $(\pm {\tt SE})$ for Nuclear index of liver cells in the                                         |    |
|                                        |                  | aflatoxin-treated and control groups of rabbits                                                        | 74 |

| Table (20):    | ANOVA for the differences in nuclear index of liver for the      |    |
|----------------|------------------------------------------------------------------|----|
|                | aflatoxin-treated and control groups of rabbits                  | 74 |
| Table (21) :   | Means ( $\pm$ SE) of liver cell measurments for the aflatoxin-   |    |
|                | treated and control groups of rabbits                            | 75 |
| Table (22) :   | ANOVA for the differences in liver cell measurments for the      |    |
|                | aflatoxin-treated and control groups of rabbits                  | 76 |
| Table (23) :   | Mean ( $\pm$ SE) of number of binucleated cells of liver for the |    |
|                | aflatoxin-treated and control groups of rabbits                  | 77 |
| Table (24) : A | NOVA for the differences in number of binucleated cells of       |    |
|                | liver for the aflatoxin-treated and control groups of rabbits    | 77 |
| Table (25) :M  | leans ( $\pm$ SE) for absolute and relative weight of mammary    |    |
|                | gland in the aflatoxin-treated and control groups of rabbits     | 79 |
| Table (26)     | ANOVA for the differences in absolute weight of mammary          |    |
|                | gland for the aflatoxin-treated and control groups of rabbits    | 80 |
| Table (27) :   | ANOVA for the differences in relative, weight of mammary         |    |
|                | gland for the aflatoxin-treated and control groups of rabbits    | 80 |

# LIST OF FIGURES

| <b>!</b>                                                                                                          | Page |
|-------------------------------------------------------------------------------------------------------------------|------|
| Fig. (1): Mean values of blood determinations of female Bouscat rabbits as affected by aflatox in $B_1$ treatment | 68   |
| Fig. (2-a): Changes in absolute and relative weight of liver in the                                               |      |
| different experimental groups of rabbits, immediately after treatment                                             | 81   |
| Fig. (2-b) : Changes in absolute and relative weight of liver in the                                              |      |
| different experimental groups of rabbits, at weaning                                                              | 81   |
| Fig. (3): Changes in nuclear index of liver for the different experimental groups of rabbits                      | 82   |
| Fig. (4): Changes in liver cell measurement for the different                                                     |      |
| experimental groups of rabbits                                                                                    | 82   |
| Fig. (5): Changes in number of binucleated cells of liver for the different experimental groups                   | 82   |
| Fig. (6-a): Changes in absolute and relative weight of mammary gland                                              |      |
| in the different experimental groups of rabbits, immediately after treatment                                      | 83   |
| Fig. (6-b): Changes in absolute and relative weight of mammary gland                                              |      |
| in the different experimental groups of rabbits, at weaning                                                       | 83   |
| Fig. (7): Liver of a control animal shows normal portal tracts and normal hepatic architecture                    | 89   |
| Fig. (8): High power of Fig. (7) showing the normal liver cells                                                   |      |
| (hepatocytes)                                                                                                     | 89   |

| ٠. |   |   |
|----|---|---|
| •  | - | • |
|    |   |   |

| Fig. (9): Section of liver of Group I animal showing disrupted cords  |    |
|-----------------------------------------------------------------------|----|
| of cells with decreased distance between the lobules                  | 9( |
| Fig (10): Section of liver form Group I amimal showing aportal        |    |
| tract with round cell infiltration and lymphatic dilation.            |    |
| Liver cells showing vaculated cytoplasm and nuclei with               |    |
| peripheral chromatin distribution                                     | 90 |
| Fig (11): Liver of an animal from group I shows extensive haemorrhage |    |
| with deposition of heemosidrin                                        | 91 |
| Fig (12): Liver of an animal from group I shows hyperplasia of median |    |
| sized bile ducts and lymphatic dilation. The sinusoids are dilated    |    |
| with many RBCs inside                                                 | 91 |
| Fig (13): Section of liver of a group I animal showing round cell     |    |
| infiltration of portal tract with proliferation of bile ducts         | 92 |
| Fig (14): Section from another case of group I showing a portal tract |    |
| around which hepatocytes with fatty metamorphasis (vaculation         | ì  |
| of cytoplasm).                                                        | 92 |
| Fig (15): Liver of an animal fed on affatoxin shows centrilobular     |    |
| necrosis of liver cells (group I)                                     | 93 |
| Fig (16): High power of Fig (15) showing the necrotic cells           |    |
| surrounding the central vein while the peripheral cells               |    |
| are normal. The necrotic cells showed pyknotic nuclei and             |    |
| vaculated cytoplasm                                                   | 93 |
| Fig (17): Group II: Section of liver showing bile duct proliferation  |    |
| and round cell infiltration. Note bile stasis in the bile duct        |    |
| in the upper right of the figure                                      | 94 |
| Fig (18): Group II section of liver showing periportal fibrous        |    |
| tissue and collagen. Note numerous proliferated bile ducts            | 94 |