THE INTEGRATED CONTROL OF POST HARVEST DISEASES OF SOME VEGETABLES AND FRUITS

ST

8y

MARWA ABD-ALLA MAHMOUD ATWA

B.Sc. Agric. (Plant Pathology), Ain Shams Univ., (1994)

A thesis submitted in partial fulfillment

Of

the requirements for the degree of

1000

32 M. A **MASTER OF SCIENCE**

55 996

m

Agriculture (Plant Pathology)

Department of Plant Pathology
Faculty of Agriculture
Ain Shams University

1999

APPROVAL SHEET

THE INTEGRATED CONTROL OF POST HARVEST DISEASES OF SOME VEGETABLES AND FRUITS

By

MARWA ABD-ALLA MAHMOUD ATWA

B.Sc. Agric. (Plant Pathology), Ain Shams Univ., (1994)

This thesis for M. Sc. degree has been approved by:

Prof. Dr. A. M. Abdel-Hafez

Professor of Microbiolgy,
Fac. of Agriculture, Ain Shams Univ.

Prof. Dr. A. M. Abdel-Monem

Director of Plant Pathol. Instit.,
Agriculture Research Center.

Prof. Dr. M. F. Hegazi

Professor of Plant Pathology,
Fac. of Agric., Ain Shams Univ.

Date of Examination: / / 1999.

(Supervisor).

THE INTEGRATED CONTROL OF POST HARVEST DISEASES OF SOME VEGETABLES AND FRUITS

By MARWA ABD-ALLA MAHMOUD ATWA

B.Sc. Agric. (Plant Pathology), Ain Shams Univ., (1994)

Under the supervision of:

Prof. Dr. M. F. Hegazi

Professor of Plant Pathology, Fac. of Agric., Ain Shams Univ.

Dr. S. T. Shehata

Lecturer of Plant Pathology, Fac. of Agric., Ain Shams Univ.

Dr. Azza A. M. Shahin

Lecturer of Plant Pathology, National Center for Radiation Research and Technology (NCRRT).

Abstract

Marwa Abd-Alla M. Atwa: The integrated control of post harvest diseases of some vegetables and fruits. Un published Master of Science, Faculty of Agriculture, Department of Plant Pathology, Ain Shams University (1999).

The principle objectives of this work aimed to determine the losses of postharvest diseases of tomato and grapes with reference to their causal organisms Possibilities to control these diseases by safe methods such as irradiation, fumigation by sulfur dioxide, ethanol, as well as biological control were studied.

The main causal organisms of postharvest fruit rots of tomato were Alternaria alternata, A. solani, Penicillium expansum, P. cyclopium, Stemphylium herbarum, Pleospora herbarum, Botrytis cinerea, Rhizopus oryzae and Aspergillus niger Losses ranged from 10.8 % to 37.5 % under normal storage condition However, for grapes the main pathogens were A. alternata, B. cinerea, P. curstosum, P. expansum, P. viridicatum, P. cyclopium and Cladosporium herbarum. The total wastage ranged from 19.6% to 31.6% in the control treatment.

Gamma irradiation treatments of tomato at 0.25 KGy decreased the total losses to 2.3 % as compared with 17.6 % for the control, while 2 KGy inhibited the ripening of tomato fruits. For grapes, doses from 0.25 KGy to 4 KGy decreased the total wastage to 4.86 % compared with 22.1% for control.

Fumigation treatments of grapes with sulfur dioxide reduced the total wastage to 4.8 % as compared with 15.7 % for control. Fumigation with ethanol vapor (30%) decreased the total losses of

tomato to 0.0 % compared with 41.6 % for the control up to 23 days, and delayed the ripening of tomato fruits up to 30 days.

Seventy five different isolates of yeast, which were isolated from surface of apple, grapes and tomato fruits were evaluated in vivo (primary screening) for bio-control potential of Alternaria mould of tomato. On the base of primary screening 12 isolates were selected to continue secondary screening with different concentrations of antagonisms at 21± 0.5°C against Alternaria mould of tomato. In the secondary screening at 13±1°C, using washed cells of Arthroascus sp (isolate Ap638) at 1x10° produced absolute protection for 18 days to wounds inoculated with spore suspension of A. alternata (1x10° conidial ml).

Key Words: Tomato fruits; Grape; Cold storage; Ethanol; Irradiation; Sulfur dioxide; Biological control.

ACKNOLEDGMENT

The author wishes to express her gratitude and deep thanks to Prof. Dr. M. F. H. Hegazi, Prof. of Pl. Path. and Dr. S.T. Shehata, Lecturer of Pl. Path., Plant Pathology Dept., Faculty of Agric., Ain Shams Univ. for their keen supervision, interest. stimulating encouragement, valuable criticisms and concrete discussion and to Dr. Azza A.M.Shahin, Lecturer of Pl. Path., Microbiology Dept. National Center for Radiation Research and Technology. (NCRRT) for her continuous help during the development of the work.

Thanks are also expressed to Prof. Dr. Dorria I. Harfoush, Professor of Plant Pathology, Pl. Path. Dept., Faculty of Agric., Ain Shams Univ. for her help during the start of this investigation.

Thanks are also to "Regional Councils for Agricultural Research and Extension" for financial support of this work.

TABLE OF CONTENTS

1. INTRODUCTION.	1
2. REVIEW OF LITREATURE	3
3. MARTERIAL AND METHODS	30
4. RESULTS	45
1.isolation of the causal organisms and	
economic losses	45
2. Identification of the causal organisms	53
3. Pathogenicity test	59
4. Fruit analysis	63
5. Chemical control	66
5.1. Preharvest treatments	6 6
5.2. Postharvest treatments	72
5.2.1. Fumigation treatments	72
5.2.1.1. Sulphur dioxide	72
5.2.1.2. Ethanol treatments	77
6. Irradiation treatments	8 5
7. Biological control treatments	100
7.1. Tomato	100
7.1.1 Primary screening	100
7.1.2. Secondary screening (Phase one)	105
7.1.3. Secondary screening (Phase two)	113
7.2. Grapes	117
7.2.1. Primary screening	117
7.2.2. Postharvest application	119
7.2.3. Pretharvest application	123
5. DISCUSSION	129
6. SUMMARY	142
7.REFERENCES	146
ARARIC SHIMMARY	

LIST OF TABLES

No		Page
1	Percentage of decayed fruits harvested at mature- green stage stored for 18 days at 7 or 13°C and then for 5 days at room temperature (25±5°C)	46
2	Frequency of different isolated fungi (%) on tomato fruits harvested at mature-green stage, stored for 18 days at 7°C or 13°C and then for 5 days at room temperature (25±5°C)	46
3	Frequency of different isolated fungi (%) on Flam seedless grapes during storage at 0°C in 1996 and 1997 seasons	48
4	Frequency of different isolated fungi (%) on Thompson seedless grapes during storage at 0°C in 1996, and 1997 seasons	49
5	Frequency of different isolated fungi (%) on Romi- Red grapes during storage at 0°C in 1996 and 1997 seasons	50
6	Rotted berries (%) of Flam seedless, Thompson seedless, and Romi-Red grapes during storage at 0°C, in 1996, and 1997 seasons	51
7	Fruit weight loss (WL%) of Flam seedless,	

No.		Page
	Thompson seedless, and Romi-Red grapes during storage at 0°C in 1996, and 1997 seasons	52
8	Subsequent fruit shatter % of Flam seedless, Thompson seedless, and Romi-Red grapes during storage at 0°C in 1996, and 1997 seasons	52
9	Total wastage of Flam seedless, Thompson seedless, and Romi-Red grapes during storage at 0°C in 1996, and 1997 seasons	53
10	Identification of different isolated fungi from decayed grape berries during 1996& 1997 seasons	54
11	Identification of different isolated fungi from decayed tomato fruits during 1996& 1998 seasons	57
12	Pathogenicity of different isolated fungi on tomato fruits	60
13	Pathogenicity of different isolated fungi from grape berries, incubated at 21°±0.5°C	63
14	Effect of storage at 13 or 7°C of mature-green tomato, Oriet variety, on fruit chemical analysis, i.e L-Ascorbic acid (LAA mg %), the total soluble solids (TSS%), the titratable acidity (TA%) and TSS /TA	05
	ratio	65

No		Page
15	Effect of storage at 13 or 7°C of mature-green tomato on fruit physical analysis, i.e fruit weight loss, fruit firmness, and days required to reach table ripe stage.	66
16	Effect of preharvest fungicide treatment (Sumisclex) on the percentage of decay of Flam seedless grapes during storage periods at 0°C in 1996 season	68
	30d30H	•
17	Effect of preharvest treatment (Sumisclex) on the frequency of different isolated fungi (%) on Flam seedless grapes during storage periods at 0°C in 1996 season	69
18	Effect of preharvest fungicide treatment (Sumisclex) on the subsequent fruit weight loss (%) of Flam seedless grapes during storage periods at 0°C in 1996 season	70
19	Effect of preharvest fungicide treatment (Sumisclex) on the subsequent fruit shatter (%) during storage periods at 0°C in 1996 season	71
20	Effect of preharvest treatment (Sumisclex) on the total wastage of Flam seedless grapes after 30 days of storage at 0°C at 1996 season	71
21	Residue of funcicide (Sumisclex) of Flam seedless	

No		Page
	grapes during storage at 0°C with its degradation at season 1996	72
22	Effect of fumigation with sulfur dioxide (SO ₂)on the percentage of decay of Thompson seedless grapes during storage at 0°C in 1996 season	73
23	Effect of fumigation treatment with sulfur dioxide SO ₂ on the frequency of different isolated fungi (%) on Thompson seedless grapes during storage periods at 0°C in 1996 season	74
24	Effect of fumigation with sulfur dioxide SO ₂ on the subsequent fruit weight loss (%) of Thompson seedless grapes during storage at 0°C in 1996 season	75
25	Effect of fumigation treatment with sulfur dioxide SO ₂ on the subsequent fruit shatter (%) of Thompson seedless grapes during storage periods at 0° C in 1996 season	75
26	Effect of fumigation treatment with SO ₂ on the total wastage of Thompson seedless grapes during storage at 0°C in 1996 season	76
27	Residue of sulfur dioxide of Thompson seedless grapes during storage at 0°C in 1996 season	76

No		Page
28	Effect of exposing mature-green tomato fruits to different concentration of ethanol vapor on the percentage of decay during storage at 13°C for 18 days, and at 20± 1°C until reached the table ripestage	77
29	Effect of exposing harvested mature-green tomato fruits to different concentration of ethanol vapor on the frequency of different isolated fungi (%) during storage at 13°C for 18 days, and at 20°C ± 1 until reached the table ripe stage	79
30	Effect of exposing mature-green tomato fruits to different concentrations of ethanol vapor on the fruit chemical analysis, L-ascorbic acid (LAA mg %), the total soluble solids (TSS%), the titratable acidity (TA%), and the TSS/TA ratio during storage at 13°C for 18 day, and at 20°C±1 until reached the table ripe stage	81
31	Effect of exposing harvested mature-green tomato fruits to different concentration of ethanol vapor on the fruit physical analysis, i.e fruit weight loss, and fruit firmness during storage at 13°C for 18 days and at 20 ±1°C, as well as days required to reach table-ripe stage	82
32	Effectiveness of radiation doses (0, 1, 2 and 3 KGy) on the average growth diameter (mm) of different	

No.		Pag
	isolates from tomato and grape	85
33	Effect of irradiation treatment on the percentage of	
	decay of Romi-Red grapes during storage at 0°C in	
	1996 and 1997 seasons	87
34	Effect of irradiation treatment on percentage of the	
	frequency of different isolated fungi from decayed	
	Romi-Red grapes during storage at 0°C in 1996	
	season	89
35	Effect of irradiation treatment on the frequency of	
	the frequency of different isolated fungi from	
	decayed Romi-Red grapes during storage at 0°C in	
	1997 season	90
36	Effect of irradiation treatment on the subsequent	
	fruit weight loss % of Romi-Red grapes during	
	storage at 0°C in 1996 and 1997 seasons	91
37	Effect of irradiation treatment on the subsequent	
	fruit shatter % of Romi-Red grapes during storage at	÷
	0°C in 1996 and 1997 seasons	92
38	Effect of irradiation treatment on the total wastage of	
	Romi-Red grapes during storage at 0°C in 1996 and	
	1997 seasons	93
39	Effect of irradiation treatment on the titratable acidity	

V o		Page
	(TA%) and total soluble solids (TSS%) of Romi-Red	
	grapes during storage for 30 days at 0°C in 1997	
	season	94
40	Effect of gamma irradiation on the percentage of	
	decay of tomato fruits treated at mature-green stage	
	and stored at 13°C for 18 days	95
41	Effect of irradiation treatment on percentage of the	
	frequency of different isolated fungi from decayed	
	tomato fruits during storage at 13°C for 18 days	95
	terriale ward carrie delice at the brief to days	
42	Effect of exposing harvested mature-green tomatoes	
	to radiation doses on the fruit chemical analysis, i.e.	
	L-ascorbic acid (LAA), total soluble solid (TSS%).	
	titratable acidity (TA%) and TSS/TA ratio during	
	storage periods at 13°C	97
43	Effect of exposing harvested mature-green tomato	
	to radiation on the subsequent fruit weight loss (%)	
	during storage periods at 13°C	98
44	Lesion diameter of infected area (mm), infected area	
	(mm ²) and percent of infected area as compared	
	with control, 7 days after tomato wounds	
	wereinoculated with different isolates and	
	challenged with Atternaria attempts 1v10 ⁶	101