TRANSATRIAL SEPTAL APPROACH FOR MITRAL VALVE SURGERY

Thesis
Submitted in partial Fulfilment for the Requirements of the

Medical Doctorate Degree

in

Cardio-Thoracic Surgery

By HOSAM FOUAD ALY FAWZY

M.B., B. Ch., M.Sc.

\$17.412 H.F

Supervisors

Prof. Dr.

Ismail A. Sallam
Minister of Health and population,
and Professor of Cardio-Thoracic Surgery
Faculty of Medicine
Ain-Shams University

Prof.Dr.

Mohamed M. El-Saegh Prof. of Cardio-Thoracic Surgery Faculty of Medicine Ain-Shams University Prof. Dr.

Tarek Z. Shalaby
Prof. of Cardio-Thoracic Surger
Faculty of Medicine
Ain-Shams University

Ain-Shams University 1997

TO MY WIFE ...

DR. WEGDAN HELMY MAWLANA &

TO MY KIDS ...

AMR & SHERIF

Acknowledgments

First, I should thank "GOD" who helped me all through to achieve this work.

I would like to express my profound and sincere gratitude to *Prof. Dr. Ismail A. Sallam*. Minister of health and population, and professor of Cardio-Thoracic Surgery-Faculty of Medicine- Ain Shams University who enlighten the way to complete this work with his precious advise, endless help and fatherly attitude.

I wish also to express my deep appreciation to *prof. Dr. Mohamed M. El-Saegh*, professor of Cardio- Thoracic Surgery- Faculty of Medicine- Ain Shams University, who kindly supervised and generously helped me all the way to the end of this study.

I wish to extend my sincere thanks to *prof. Dr. Tarek Z. Shalaby*, professor of Cardio- Thoracic Surgery- Faculty of Medicine- Ain Shams University for his valuable guidance and encouragement.

I owe a deep gratitude to *Prof. Dr. Hamid M. Al-Akshar*, professor of Cardio-Thoracic Surgery- Faculty of Medicine- Tanta University for his valuable guidance and encouragement.

I am also deeply indebted to *Prof. Dr. Ehab A. Wahby*, Assistant professor of Cardio- Thoracic Surgery- Faculty of Medicine- Tanta University for his continuous guidance, kind support and indispensable assistance.

I would also like to express my profound gratitude to *Dr. Robert W. Stewart*, Staff of Cardio- Thoracic Surgery and the Director of Cardiac Transplantation, The Cleveland Clinic Foundation for his genuine care and inexhaustible help throughout the whole work.

I wish also like to express my deep appreciation to *Dr.Amro R. Serag*, lecturer of Cardio-Thoracic Surgery-Faculty of Medicine- Tanta University for his precious advise, endless help, continuous encourgment and brotherly attitude.

I owe a deep gratitude to *Dr. Mostafa A. Aabdel-Gawad*, lecturer of Cardio-Thoracic Surgery- Faculty of Medicine- Ain Shams University for his valuable guidance and encouragement.

I am also deeply indebted to *Prof. Dr. Hassan m. Moftah*, Assistant lecturer of Cardio- Thoracic Surgery- Faculty of Medicine- Ain Shams University for his continuous guidance, kind support and indispensable assistance

Many thanks to all staff members in the Cardiovascular imaging section, Department of Cardiology, The Cleveland Clinic Foundation, who were willing enough to help me in this work.

Contents

	Pages
I. Review of literature:	1-105
* Surgical anatomy of the right atrium	4
* Surgical anatomy of the interatrial septum	8
* Surgical anatomy of the left atrium	13
* Surgical anatomy of the mitral valve	15
* Thoracic incisions for mitral valve exposure	26
* Surgical techniques for mitral valve exposure	52
II. Aim of the work	106
III. Patients and methods	107
IV. Results	128
V. Discussion	191
VI. Summary and Conclusions	203
VII. References	207
VIII. Arabic Summary	

Abbreviations:

AF Atrial Fibrillation

ARDS Adult Respiratory Distress Syndrome

AVR Aortic Valve Replacement

CABG Coronary artery Bypass Grafting

COP Cardiac Output

CPB Cardiopulmonary bypass

ECMO Extra-Corporeal Membrane Oxygenator

EF Ejection Fraction

GIT Gastrointestinal Tract

IVC Inferior Vena Cava

LA Left Atrium

LL Lower Limb

LV Left Ventricle

MR Mitral Regurgitation

MVR Mitral Valve Replacement

NSR Normal Sinus Rhythm

NYHA New York Heart Association classification

PL Posterior Leaflet

PM Papillary Muscle

RA Right Atrium

SF Shortening Fraction
SVC Superior Vers C

SVC Superior Vena Cava

TEE Transesophagoal False v. V.

TEE Transesophageal Echocardiography

TR Tricuspid Regurgitation

TTE Transthoracic Echocardiography

Tables:

	Pages
Table No. 1: Dimensions of the Mitral Leaflets.	18
Table No. 2: Thoracic Incisions for Mitral Valve Exposure.	50-51
Table No. 3: Surgical Technique for Mitral Valve Exposure.	101-105
Table No. 4: Type of Arterial Cannulation in Group I.	134
Table No. 5: Type of the Venous Cannulation in Group I.	134
Table No. 6: Aetiology of Mitral Valve Disease in Group I.	134
Table No. 7: Patients' Clinical Data in Group I [A].	135-130
Table No. 8: Patients' Clinical Data in Group I [B].	137-138
Table No. 9: The Changes in the Clinical Status in Patients in	
Group I [A] after Mitral Valve Surgery.	139
Table No. 10: The Changes in the Clinical Status in Patients in	
Group I [B] after Mitral Valve Surgery.	139
Table No. 11: Type of Mitral Valve Surgery in Group I.	140
Table No. 12: Intra-operative Exposure of the Mitral Valve in Group I.	140
Table No. 13: Duration of the Procedure in Group I.	140
Table No. 14: Severity of Mitral Regurgitation by Intra-operative	
TEE Before and After Mitral Valve Surgery in Group I [A].	141
Table No. 15: Severity of Mitral Regurgitation by Intra-operative	
TEE Before and After Mitral Valve Surgery in Group I [B]	. 141
Table No. 16: Post-operative Blood Loss in Group I.	142
Table No. 17: Post-operative Blood Usage in Group I.	143
Table No. 18: Post-operative Pain and use of analgesics in Group I.	143
Table No. 19: Post-operative Respiratory support in Group I.	143
Table No. 20: Average Heart Rate Pre and Post-operatively in Group I.	144
Table No. 21: Heart Rhythm Pre and Post-operatively in Group I.	144
Table No. 22: Range of Blood Pressure Pre and Post-operatively in Group	o I.145
Table No. 23: Post-operative Inotropic usage greater than 24 Hours	
in Group I.	145
Table No. 24: Length of intensive Care Unit Stay in Group I.	146
Table No. 25: Length of Stay at hospital in Group I.	146
Table No. 26: Post-operative Complications after Mitral Valve Surgery	
in Group I.	147
Table No. 27: Patients with different Grades of Mitral Regurgitation on	
Early Post-operative TTE in Group I [A].	148

Table No. 28: Patients with different Grades of Mitral Regurgitation on	
Early Post-operative TTE in Group I [B].	148
Table No. 29: Trans-Thoracic Echocardiographic Study in Group I [A]	1.0
During the Follow Up Period.	149
Table No. 30: Trans-Thoracic Echocardiographic Study in Group I [B]	115
During the Follow Up Period.	150
Table No. 31: Aetiology of Mitral Valve Disease in Group II	167
Table No. 32: Patients' Clinical Data in Group II [A].	168-169
Table No. 33: Patients' Clinical Data in Group II [B].	170-171
Table No. 34: The Changes in the Clinical Status in Patients in	1,01,1
Group II [A] after Mitral Valve Surgery.	172
Table No. 35: The Changes in the Clinical Status in Patients in	• • •
Group II [B] after Mitral Valve Surgery.	172
Table No. 36: Type of Mitral Valve Surgery in Group II.	173
Table No. 37: Associated Cardiac Procedure in in Group II.	173
Table No. 38: Intra-operative Exposure of the Mitral Valve in Group II.	174
Table No. 39: Duration of the Procedure in Group II.	174
Table No. 40: Post-operative Blood Loss in Group II.	175
Table No. 41: Post-operative Blood Usage in Group II.	175
Table No. 42: Post-operative Pain and Use of Analgesics in Group II.	176
Table No. 43: Post-operative Respiratory support in Group II.	176
Table No. 44: Average Heart Rate Pre and Post-operatively in Group II.	177
Table No. 45: Heart Rhythm Pre and Post-operatively in Group II.	177
Table No. 46: Range of Blood Pressure Pre and Post-operatively	
in Group II.	178
Table No. 47: Post-operative Inotropic usage greater than 24 Hours	
in Group II.	178
Table No. 48: Length of intensive Care Unit Stay in Group II.	179
Table No. 49: Length of Stay at hospital in Group II.	179
Table No. 50: Post-operative Complications after Mitral Valve Surgery	
in Group II.	180
Table No. 51: Patients with different Grades of Mitral Regurgitation on	
Early Post-operative TTE in Group II [A].	181
Table No. 52: Patients with different Grades of Mitral Regurgitation on	
Early Post-operative TTE in Group II [B].	181
Table No. 53: Patients with different Grades of Tricuspid Regurgitation on	
Early Post-operative TTE in Group II [A].	182

Table No. 54: Patients with different Grades of Tricuspid Regurgitation on	
Early Post-operative TTE in Group II [B].	182
Table No. 55: Trans-Thoracic Echocardiographic Study in Group II [A]	
During the Follow Up Period.	183
Table No. 56: Trans-Thoracic Echocardiographic Study in Group II [B]	
During the Follow Up Period.	184

Figures:

		Pages
Fig.	1: Anatomy of the right auricle	6
Fig.	2: Anatomy of the Right Atrium	7
Fig.	3: Right Atrial View of the Atrial Septum	11
Fig.	4: Left Atrial View of the Atrial Septum	12
Fig.	5: Anatomy of the Left Atrium	14
Fig.	6: Anatomy of the Mitral Valve	23
Fig.	7: Chordae of the Anterior Mitral Leaflet	24
Fig.	8: Chordae of the Posterior Mitral Leaflet	24
Fig.	9: Anatomy of the Fibrous Skeleton of the Heart	25
Fig.1	0: Median Sternotomy Incision	29
Fig.1	1: Horizontal Submammary Skin Incision for Median Sternotomy	33
Fig.1	2: Right Antero-lateral Thoracotomy	37
Fig.1	3: Right Antero-lateral Thoracotomy without Pericardial Dissection	42
Fig.1	4: Left Postero-lateral Thoracotomy	47-48
Fig.1	5: The Standard Left Atriotomy Technique for Mitral valve surgery	55
	6: Atrial Retractor Clamp	56
Fig.1	7: Cosgrove Self-retaining Retractor	57
_	8: Mitral Valve Retractor	58
Fig.1	9: Suspension of the pericardium on the right and lysis of adhesion	
Ü	over the Left Ventricle promotes rotation of the Heart	59
Fig.2	0: Traction on the Inferior Vena Cava elevates the right Side	
Ü	of the Heart	59
Fig.2	1: Exposure of the posterior Medial Papillary Muscle	60
	22: Exposure of the Anterior Lateral Papillary Muscle	60
	23: Dissection of The Interatrial Groove	62-65
Fig.	24: Complete Mobilization of the superior Vena Cava	69
	25: Mobilization of SVC & IVC	70
_	26: Complete Transection of the SVC	71
Fig.	27: The Superior Approach of the Mitral Valve	75
Fig.	28: Combined Superior and Right Lateral Left Atriotomy with	
9	Division of the SVC	77
Fig.	29: Transseptal Approach to the Mitral valve (McGrath)	81
Fig.	30: Transseptal Approach to the Mitral valve (El-Saegh)	82
Fig.	31: Biatrial Transseptal approach for the Mitral valve (khonsari)	86-87
Fig.	32: Biatrial Transseptal approach for the Mitral valve (Deloche)	88-89
	33: The Inverted T-shaped Incision (Campanella)	90-91

The second Incision (Garcia-Villarreal)	92
Fig. 34: The Inverted T-shaped Incision (Garcia-Villarreal)	98-99
Fig. 35: Combined Superior-Transseptal approach to the Mitral Valve	100
Fig. 36: Left Ventriculotomy for Exposure of the Mitral Valve	113-120
Fig. 37: Minimal Invasive Mitral Valve Surgery	121
Fig. 38: Quadrilateral Resection of the posterior Leaflet	121
Fig. 39: Separate Quadrilateral Resection of the posterior Leaflet	1-1
Fig. 40: Quadrilateral Resection and Suture of the Anterior and	122
Posterior Leaflet	122
Fig. 41: Chordal Transfer	123
Fig. 42: Chordal Transfer	123
Fig. 43: Chordal Transfer	124
Fig. 44: Testing Leaflet Prolapse	124
Fig. 45: Chordal Shortening	
Fig. 46: Mitral Annuloplasty using Cosgrove Annuloplasty Ring	125-127
Fig. 47: Mitral Valve Surgery in Group I [A]	151
Fig. 48: Mitral Valve Surgery in Group I [B]	152
Fig. 49: Degree of Mitral Valve Exposure in Group I	153
Fig. 50: Aortic Cross Clamp Time in Group I	154
Fig. 51: Total Bypass Time in Group I	155
Fig. 52. Correlation of Pre & Post-operative EF% in Group 1 [A]	156
Fig. 53: Correlation of Pre & Post-operative EF% in Group I [B]	157
Fig. 54: Changes in LA Diameter in Group I [A]	158
Fig. 55: Changes in LA Diameter in Group I [B]	159
Fig. 56: Pre-operative TEE Showing Posterior Eccentric Jet of MR	160
Fig. 57: Post-operative TEE Showing No MR	160
Fig. 58: Degree of Mitral Valve Exposure in Group II	185
Fig. 59: Aortic Cross Clamp Time in Group II	186
Fig. 60: Total Bypass Time in Group II	187
Fig. 61: Correlation of Pre & Post-operative EF% in Group II [A]	188
Fig. 62: Correlation of Pre & Post-operative EF% in Group II [B]	189
Fig. 63: Pre-operative TTE Showing Severe TR	190
Fig. 64: Post-operative TTE Showing No TR	190
MIG 64. POSI-ODERNING LLE DUOMINE IN IN	

Review of Literature

Review of Literature

The increasing population of patients requiring mitral valve operations has made it clear to the surgeons that successful operation needs excellent exposure of this valve.

Over the last 30 years, surgical exposure of the mitral valve has challenged surgeons and several approaches have been devised. However, these conventional techniques have failed to totally solve this problem.

The growing need and interest to perform mitral valve reparative techniques and problems facing surgeons during mitral valve reoperations have led to reexamine the various approaches to the mitral valve.

In 1961, Saksena et al., started solving this problem by using the superior approach which gave good exposure when the left atrium is large, then he was followed by Meyer et al., in 1965 who used the same technique in a large number of their patients. In 1965, Bowman and Miam started to use the transseptal technique by a septal incision was made in the cranio-caudal diameter of the stretched fossa ovalis. In 1966, Dubost used the biatrial transseptal incision which is known by his name and it is started in the left atrium at its junction with the right superior pulmonary vein, then it is extended medially across the left atrium, interatrial septum and the right atrial wall. Murtra et al., in 1975, followed Bowman and Miam by making the transseptal incision in the cranio-caudal diameter of the stretched fossa ovalis. Later on, the inverted T-incision was first described by Brawley in 1980 as the incision was started by a vertical incision between the two caval cannulas on the right atrial wall and was connected to the standard left atriotomy incision, then the left atrial septum was divided from