INDUCED RESISTANCE IN WATERMELON (CITRULLUS VULGARIS), AGAINST WILT DISEASE CAUSED BY FUSARIUM OXYSPORUM F.SP. NIVEUM.

Ву

FARID ABD-EL-KAREEM IBRAHIM

A thesis submitted in partial fulfillment

of

the requirements for the degree, of

Master of Science

in

Agriculture (Plant Pathology)

Department of Plant Pathology

Faculty of Agriculture
Ain Shams University

1993

Approval Sheet

INDUCED RESISTANCE IN WATERMELON (CITRULLUS VULGARIS), AGAINST WILT DISEASE CAUSED BY FUSARIUM OXYSPORUM F.SP. NIVEUM.

Ву

FARID ABD-EL-KAREEM IBRAHIM

B. Sc. in Agric. (Plant Pathology) Fac. of Agric. Assuit University, 1984.

This thesis for M.Sc. degree has been :

Approved by:

Prof. Dr. M.D.H. Aly

Prof. of Plant Pathology, National

Research Centre.

Prof. Dr. M.F. Hegazi

Prof. and Head of Plant Pathology Dept.

Fac. of Agric. Ain Shams University.

Prof. Dr. M.M. Aly

Prof. of Plant Pathology. Fac. of

Agric., Ain Shams University.

Date of Examination : /7/4 / 1993.

INDUCED RESISTANCE IN WATERMELON (CITRULLUS YULGARIS), AGAINST WILT DISEASE CAUSED BY FUSARIUM OXYSPORUM F.SP. NIVEUM.

Ву

FARID ABD-EL-KAREEM IBRAHIM

B. Sc. Agric. (Plant Pathology Dept.) Assuit
Univ., (1984)

Under the supervision of :

Prof. Dr. W.E. Ashour

Prof. of Plant Pathology, Ain Shams University.

Prof. Dr. M.M. Aly

Prof. of Plant Pathology, Ain Shams University.

Prof. Dr. M.M. Diab

Prof. of Plant Pathology, National Research Centre.

ABSTRACT

Induction of resistance in watermelon plants against fusarium wilt caused by <u>Fusarium oxysporum</u> f.sp. <u>niveum</u> was studied. Inoculation of germinating seeds with 10⁶ cfu/ml of biotic inducers i.e. air-borne fungi and non-pathogenic formae speciales of <u>Fusarium oxysporum</u> were tested. In other treatments resistance was induced by seed soaking in solutions of Cobalt as CoSo₄, and ethephon.

The most effective treatments in reducing the percentage of wilted plants in pot experiments, were F.o. niveum race 0, F.o. cucumerinum and Stemphylium sp., in addition to Co to 0.5 ppm, ethephon 600 and 800 ppm, on Giza 1 cv. Two field experiments were carried out during 1991 and 1992 growing seasons in naturally infested soil, on Giza 1 The most promosing treatments in pot experiments were applied, in addition to the Benlate treatment comparison. Results showed that all the tested inducers effectively controlled the disease. Their effectiveness withstood till the end of growing season. Remarkable reductions in disease incidence were obtained with treatments of ethephon 600, 800 ppm and Co⁺⁺ 0.5 ppm, followed by F.o. cucumerinum and F.o. niveum race 0. Chemical inducers increased fruit weight/plant about 10 times of the untreated and more than 3 times of the Benlate treatment. Meanwhile, treatment of Stemphylium sp. was similar in its effect to the Benlate treatment. As for Gorma cv. The most effective treatments in reducing the percentage of wilted plants in pot experiments were F.o. cucumerinum; F.o. melonis, Stemphylium sp., Co to 0.5 ppm ethephon 600 and 800 ppm. The most promosing treatments in addition to Benlate as a comparison were applied under field conditions. Two field experiments were carried out during 1992 growing season. Results showed that all the inductive treatments were effective in controlling fusarium wilt, increasing number of fruits/plant, seed-yield/feddan and weight of 100 seeds. The most effective treatments were chemical inducers and F.o. cucumerinum. Meanwhile, treatment of F.o. melonis and Stemphylium sp., were similar in their effect to the Benlate treatment. An additional foliar application with Co^{t+} 0.25 ppm was applied after 60 days in one experiment. Statistical analysis indicated that this treatment had no significant effect. All inductive treatments stimulated chitinase activity before challenge. The most effective treatments were ethephon 800 ppm and F.o. niveum race 0. Challenging with the pathogen increased chitinase activity of the abiotic treatments, as determined after 24, 48 and 72 h.

Results of this investigation conclude that induction of resistance could be considered a practical and effective method for controlling wilt disease of watermelon. Large scale experiments on other cultivars is needed to recommend this method for controlling the disease at the commercial level.

ACKNOWLEDGMENT

The author would like to express his deep sense of gratitude, and appreciation to Prof. Dr. Wally, E. Ashour Professor of Plant Pathology; Prof. Dr. Madih, M. Aly, Professor of Plant Pathology, Ain Shams University, and Prof. Dr. Mohamed, M. Diab Professor of Plant Pathology, National research Centre, for their supervision and valuable guidance during the research work and preparation of the manuscript.

Many thanks are also due to Prof. Dr. Ahmed, A. Morsy, Professor and Head of Plant Pathology Department, N.R.C., and Prof Dr. Saied, I. Amin Professor of Plant Pathology, N.R.C.

Many thanks are also due to Prof. Dr. Mohamed, A. Rasheid Head of the Agricultural and Biological Division N.R.C.

Thanks and appreciation to Mr. Sabry Y. Mohamed, Mr T. Saad and Miss Fattma Hassan for their kind permission to carrying out the experiments in their fields.

Thanks and appreciation to all staff-members at the Department of Plant Pathology, Fac. of Agric. Ain Shams University, and Department of Plant Pathology, National Research Centre.

CONTENTS

	Page
INTRODUCTION	. 1
REVIEW OF LITERATURE	. 3
1- Causal organism and economic importance	3
2- Induction of resistance in plants	5
2:1 Biotic inducers	. 5
2:2 Chemical inducers	. 10
3- Biochemical response of the host to stress agents	12
MATERIAL AND METHODS	. 15
1- Isolation of the causal fungus	15
2- Pathogenicity tests	. 15
3- Disease assessment	. 16
4- Pot experiments	. 16
4:1 Tests of biotic inducers	. 16
4:2 Tests of chemical inducers	. 18
4:3 Evaluation of selected inductive treatments	. 19
4:4 Effect of inductive treatments on chitinase activity .	. 21
5- Field experiments	. 22
RESULTS	. 26
1: Pathogenicity tests	. 26
1:1: Identification and characterization of fungi	. 26
2: Pot experiments	. 29
2:1: Biotic inducers	. 29
2:1:1 Induction of resistance using different air-	
horne fungi	20

						Pa	g e
		2:1:2 I	nduction of re	sistance us	ing non-path	ogenic	
		f	ormae speciale	s of <u>Fusariu</u>	m oxysporum		29
	2:2:	Chemical	l inducers			• • • • • • • • • • • • • • • • • • • •	36
		2:2:1 1	nduction of re	sistance usi	ng ethephon	treatment.	36
		2:2:2 I	nduction of re	sistance usi	ng low cobal	t ions	40
	2:3:	Effect	of interval be	tween induc	tion and cha	llenge	
		on the	induction of re	sistance	• • • • • • • • • • • • •		44
	2:4:	Effect	of conidial co	ncentration	s of <u>F.o. cu</u>	cumerinum	
		on the	induction of re	sistance	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	44
	2:5:	Effect	of selected in	ductive tre	atments on:-		
		2:5:1: 1	Disease incide	nce	• • • • • • • • • • • • • • • • • • • •		45
		2:5:2:	Some vegetativ	e characters			45
		2:5:3:	Leaf pigments .				45
	2:6:	Effect o	of inductive t	reatments or	chitinase a	ctivity	48
3:	Field	l experim	ments				50
	3:1:	Applica	tion of select	ed biotic a	nd chemical	inducers	
		on Giza	1 cultivar				50
		3:1:1 D	isease inciden	ce	• • • • • • • • • • • • • • • • • • • •		50
		3:1:2 V	egetative char	acters			54
		3:1:3 F	ruit yield	• • • • • • • • • • •	• • • • • • • • • • •		56
	3:2:	Applica	tion of select	ed seed tre	atment on Go	rma	
		cultiva	r				•
		3:2:1 D	isease inciden	ce			58
		3:2:2 V	egetative char	acters			58
		3:2:3 S	eed-vield				61

Pag	ſе
3:3: Application of selected seed treatment on Gorma	
cultivar and foliar application with cobalt 6	;4
3:3:1 Disease incidence 6	54
3:3:2 Vegetative characters 6	57
3:3:3 Seed-yield 6	57
DISCUSSION 7	' 1
summary 8	32
REFERENCES 8	3 5
ARABIC SUMMARY	

LIST OF TABLES

		Page
1-	Effect of different isolates of Fusarium oxysporum	
	f.sp. <u>niveum</u> on disease incidence in watermelon	
	plants Giza 1 and Gorma cultivars	27
2-	Percentage of wilted watermelon plants as affected	
	by presowing seed treatment with different air-	
	borne fungi	30
3-	Percentage of wilted watermelon plants as affected	
	by presowing seed treatment with non-pathogenic	
	formae speciales of <u>Fusarium oxysporum</u>	33
4-	Percentage of wilted watermelon plants as affected	
	by presowing seed treatment with different concent-	
	rations of ethephon	37
5-	Percentage of wilted watermelon plants as affected	
	by presowing seed treatment with low concentrations	
	of cobalt	41
6-	Evaluation of selected inductive treatments for	
	their effect on disease incidence and some	
	vegetative characters of watermelon plants, Giza 1 cv	46
7-	Leaf pigments of watermelon Giza 1 cv. as affected by	
	inductive treatment	47
8-	Chitinase activity of watermelon plants as affected	
	by different inducers and the subsequent challenge	
	with Fusarium oxysporum f.sp. niveum	49

		Page
9-	Fusarium wilt incidence in watermelon plant Giza 1	
	cultivar induced for resistance with various prior	
	sowing seed treatment during 1991 and 1992 growing	
	seasons	51
10-	Influence of different resistance inducers on	
	vegetative characters of watermelon plants Giza 1	
	cultivar during 1991 and 1992 growing seasons	55
11-	Influence of different resistance inducers on fruit	
	yield of Giza 1 cultivar during 1992 growing season	57
12-	Fusarium wilt incidence, vegetative characters,	
	and seed yield in watermelon plants Gorma cultivar	
	induced for resistance with various prior sowing seed	
	treatment during 1992 growing season	59
13-	Fusarium wilt incidence in watermelon plants Gorma	
	cultivar induced for resistance with various prior	
	sowing seed treatment and foliar application with	
	cobalt during 1992 growing season	65
14-	Influence of inductive treatments on vegetative	
	characters of watermelon plants Gorma cultivar	
	during 1992 growing season	68
15-	Influence of different seed treatment with different	
	inducers and foliar treatment with cobalt on seed-	
	yield of watermelon plants, Gorma cultivar, during	
	1992 growing season	69

LIST OF FIGURES

Page			
	Fusarium wilt progression in the watermelon plants,	(1)	Fig
	Giza 1 cv., as affected by presowing seed treatment		
31	with different air-borne fungi		
	Fusarium wilt progression in the watermelon plants,	(2)	Fig
	Gorma cv., as affected by presowing seed treatment		
32	with different air-borne fungi		
	Fusarium wilt progression in the watermelon plants,	(3)	Fig
	Giza 1 cv., as affected by presowing seed treatment		
	with non-pathogenic formae speciales of Fusarium		
34	oxysporum		
	Fusarium wilt progression in the watermelon plants,	(4)	Fig
	Gorma cv., as affected by presowing seed treatment		
	with non-pathogenic formae speciales of Fusarium		
35	oxysporum		
	Fusarium wilt progression in the watermelon plants,	(5)	Fig
	Giza 1 cv., as affected by presowing seed treatment		
38	with different concentrations of ethephon		
	Fusarium wilt progression in the watermelon plants,	(6)	Fig
	Gorma cv., as affected by presowing seed treament		
39	with different concentrations of ethephon		
	Fusarium wilt progression in the watermelon plants,	(7)	Fig
	Giza 1 cv., as affected by presowing seed treatment		
42	with low concentrations of cobalt		
	Fusarium wilt progression in the watermelon plants,	(8)	Fig
	Gorma cv., as affected by presowing seed treatment		
43	with low concentrations of cobalt		

			Page
Fig	(9)	Fusarium wilt progression in the watermelon	
		cultivar Giza 1 induced for resistance with	
		various prior sowing seed treatments during	
		1991 growing season	52
Fig	(10)	Fusarium wilt progression in the watermelon	
		cultivar Giza 1 induced for resistance with	
		various prior sowing seed treatments during	
		1992 growing season	53
Fig	(11)	Fusarium wilt progression in the watermelon	
		cultivar Gorma induced for resistance with	
		various prior sowing seed treatment.	
		(Experiment 1)	. 60
Fig	(12)	Fusarium wilt progression in the watermelon	
		cultivar Gorma induced for resistance with	
		various prior sowing seed treatments (A) and	
		foliar application with cobalt after 60 days	
		(B). (Experiment 2)	. 66

LIST OF PLATE

			Page
Plate	(1):	Field photographs of watermelon plants Gorma	
		cv. (60 days old) induced for resistance	
		using biotic inducers	62
Plate	(2):	Field photographs of watermelon plants Gorma	
		cv. (60 days old) induced for resistance	
		using chemical inducers	63