ENVIRONMENTAL CONTROL IN HYDROPONIC CULTURE

BY

MOHAMED ADEL EL SEDAWY ASHRY

A thesis submitted in partial fulfillment of the requirment for the degree of Doctor of Philosophy

631-27 M.A

in
Agricultural Sciences
(Agricultural Mechanization)

49984

Department of Agricultural Mechanization Faculty of Agriculture Ain-Shams University

1994

Approval sheet

ENVIRONMENTAL CONTROL IN HYDROPONIC CULTURE

BY MOHAMED ADEL EL SEDAWY ASHRY

B.Sc. Agricultural Engineering. Faculty of Agriculture, Alexandria University, June 1973. M..Sc. Agricultural Mechanization. Faculty of Agriculture, Ain-Shams University, May 1985.

Approved by

1- Prof. Dr./SALAH EL DEEN ABD EL MAKSOUD IBRAHIM

Head of Agricultral Engineering Dep. Faculty of Agriculture - El -Zagazig University.

2- Prof. Dr./ABD EL MONEM MOHAMED EL GALA

Prof. of Soils - Soils Dep.

Faculty of Agriculture - Ain-Shams University.

3- Prof. Dr./MOHAMED NABIL EL AWADY

Head of the Agricultural Mechanization Dep.

Faculty of Agriculture - Ain-Shams University. M. M. E. Auxoby

(Supervisor)

Date of examination: 16 / 2 / 1994

ENVIRONMENTAL CONTROL IN HYDROPONIC CULTURE BY MOHAMED ADEL EL SEDAWY ASHRY

B.Sc. Agricultural Engineering,
Faculty of Agriculture, Alexandria University, June 1973
M.Sc. Agricultural Mechanization.,
Faculty of Agriculture, Ain-Shams University, May 1985.

Under the supervision

Prof. Dr. M.N. EL AWADY, Head of the Agric. Mech. Dept., Fac. of Agric., Ain Shams Univ.

Prof. Dr.A.F.EL SAHRIGI Director of Agric. Eng. Res. Institute. Dr. M.M. HEGAZI Assoc. Prof. - Agri. Mech. Dept. - Fac. of Agri., Ain Shams Univ.

Abstract:- In this research, environmental control was studied in hydroponic culture. System used in this study was built up in a small greenhouse that can be used in small areas and planted with tomato (Lycopersicon esculentum mill. val. Carmillo).

This environmental factors, including temperature of the solution, were investigated under three levels (from 20 to 30°C) compared with treatment without heating (with temperature range from 17.4 to 13.8°C day/night resp.). The effect of light intensity on tomato yield production was studies by using shading net 50 % on one treatment.

For all treatment depths of solution, water requirement and yield production depended on volume and weight of fruit according to measurments.

This study clarified that the maximum production for treatments was 33.9 t/fed. The water consumption for tomato crop was 1009.47 m/fed/season, and the mean mass and volume of fruit were 97.19 g., and 73.4 cm resp., when the solution temperature was heated to 20 C with 50 % ratio of shading. This shows the importance of the solution temperature and shading through the period of experiment from 22 th Feb. to 26th May (Early summer season).

Water-utilization efficiency "EY" (kg/m) for tomato of 33.58 kg/m at 20 C solution temperature under shade was the best treatment. The economic study is discussed. It suggests that the market should be studied before using hydroponic culture.

<u>Keywards:</u> Environmental -Environmental control - Hydroponic - Hydroponic culture - light intensity - Nutrient solution - Tomato plant and yield - Water utilization efficiency.

ACKNOWLEDGEMENT

The author wishes to express his deep thanks and sincere appreciation to Prof. Dr. M. N. El Awady, Prof. and Head of Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University, for his valuable guidance, constant encouragements, and supervision.

Deep appreciation and special thanks to Prof. Dr. Ahmed Farid El-Sahrigi, Director of the Agricultural Engineering Research Institute for his cooperation in making all the arrangements in this work.

He is deeply indebted to Dr. Mahmoud Hegazi, Assoc. Prof. of Agricultural Engineering, Faculty of Agriculture, Ain shams University, and Dr. Mohamed Fayed Abd El-Fatah Khairy, Assoc. Prof. of Agricultural Engineering, Faculty of Agriculture, Al Azhar University, for their great help and cooperation.

He is grateful to all those who have contributed, in any way, to make this study possible.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. ENVIRONMENTAL CONTROL	4
2.1.1. General bases	4
2.1.2. Temperature	6
2.1.3. Relative humidity	11
2.1.4. Light intensity	13
2.2. HYDROPONIC CULTURE	16
2.2.1. General bases	16
2.2.2. Historical record	19
2.2.3. Advantages	21
2.2.4. Disadvantages	27
2.2.5. Layout and design of hydroponic system	25
2.2.6. The circulation of solution	37
2.2.7. Solution temperature	41
2.2.8. Solution pH and its measurement	46
2.2.9. Solution EC and its measurement	47

	2.2.10	. Nutrient solution	49
2.3	. TOMATO	O PLANT	64
	2.3.1.	General bases	64
	2.3.2.	Water requirement	65
	2.3.3.	Growth temperature	68
	2.3.4.	Light-intensity effect and shading	70
	2.3.5.	Tomato growth	72
2.4.	. HEAT	BALANCE OF A GREENHOUSE	7
3. MAT	TERIALS	AND METHODS	80
3.1.	. MATERI	TALS OF EXPERIMENT	80
	3.1.1.	Design of experiment	80
	3.1.2.	Pumps	86
	3.1.3.	Heaters	88
	3.1.4.	Light intensity	88
	3.1.5.	pH and EC	88
	3.1.€.	Nutrient solution	92
3 5	TEST E		2.0

3.2.1. Environmental factors	92
3.2.1.1. Temperature and relative humidity	92
3.2.1.2. Light intensity	95
3.2.2.1. Nutrient solution	97
3.2.2.2. Solution depth	98
3.2.2. Growing parameters	98
3.2.3. Tomato yield	99
3.3. WATER UTILIZATION EFFICIENCY	100
3.4. HEAT BALANCE OF A GREENHOUSE	100
3.4.1. Greenhouse energy requirements	100
3.4.2. Calculation the temperature of	
the cover	106
3.5. ECONOMIC STUDY	108
4. RESULTS AND DISCUSSION	110
4.1. Environmental factors	110
4.1.1. Temperature and relative humidity	
inside areenhouse	110

4	.1.1.1.	Maximum temperature inside and	
		outside greenhouse	113
4	.1.1.2.	Minimum temperature T(min)	
		outside and inside greenhouse	116
4	.1.1.3.	Increasing temperature inside and	
		outside greenhouse	116
4.1.2	. Light	intensity	119
4	.1.2.1.	Light intensity inside	
		greenhouse above plant levels	121
4	.1.2.2.	Light intensity inside	
		greenhouse under plant level	121
4	.1.2.3.	Effect of plant growth on light	
		intensity	125
4.2. Nutr	ient sol	ution	128
4.2.1.	Replace	ment of solution and the	
	effect	of root-zone temperature	128
4.2.2.	Plant c	onsumption of nutrient solution	
	at diff	erent solution temperatures	133
4.2.3.	Solutio	n temperature for non-heated	
	treatme	nt	136
4.2.4.	The eff	ect of solution depth against	
	root gr	owth	139

4.3.	Growing parameters of tomato plant	139
	.3.1. Plant height	
4	.3.2. Stem thickness	147
4	.3.3. Leaves number	151
4.4.	Tomato yield	154
4	.4.1. Tomato fruit specification	154
	4.4.1.1. Volume	154
	4.4.1.2. Mass	156
4	.4.2. Yield	159
	4.4.2.1. Weekly yield	159
	4.4.2.2. Total yield	166
4.5.	Water utilization efficiency	172
4.6.	HEAT BALANCE OF A GREENHOUSE	176
	4.6.1. Heat losses through the greenhouse	176
	4.6.2. The actual heat losses	178
4 7	Economic study	100

	4.7.1. Calculation costs for 1 m ² area	183
	4.7.2. Total income	183
	4.7.3. The profit	18€
	4.7.3.1. The profit from shading for 1 m^2	186
	$4.7.3.2$. The profit from heating for 1 m^2	186
	4.7.3.3. The profit from heating and	
	shading together	187
	4.7.4. The construction profit	187
5.	SUMMARY AND CONCULUTION	190
6.	REFERENCES	194
7.	APPENDIX	202
8	ADARTO STMMADY	

INTRODUCTION

1- INTRODUCTION

The rapid increase in population and the great need for more food necessitates the improvement and better management of the agriculture system and the introduction of new systems.

Hydroponics (the practice of growing plants without soil) was known for a long time. As example, Egyptian hieroglyphic records dating back to several hundred years B.C. describe the growing of plant in water (Resh, 1981).

Nutriculture refers to the culture of plants in inert substrates such as water (hydroponics), gravel (gravelculture), sand (sandculture), rockwool, and air (aeroponic). An inert substrate is one which neither contributes nor alters plant nutrients. Soil, peat moss, and bark are examples of substrates which are both biologically and chemically active. These substrates contribute nutrients which are held on their negative exchange sites and others which are released during weathering and decomposition. In addition, microbes in soil can change the form of applied nutrients, e.g., convert ammonium to nitrate (Nelson, 1985).

The advantages of the system are providing water. nutrient elements without obstacle from the soil and the ability of environmental control, agricultural intensification with high productivity. Also, this system gets rid of herbs competition and other pests, gets rid of many problems such as: labour, and soil service.

This technology has given high production of approximately 75 ton of tomatoes per feddan, and sometimes gives quick production such as animal fodder in a rotation of only four days (Awady, 1986).

In Egypt, some vegetables such as tomato have a rarity seasons which raises it s prices over 200%. The tomato uses about 30% of the vegetables - planted area (320 000 feddan) and produces about 3 million tons. Therefore, the hydroponic culture could be one of the best solutions to overcome the rarity-seasons problem.

In this study, tomate was planted inside a new construction of greenhouse. This construction was meant to be easy and small to suit the needs of houses, hotels and other small areas to obtain fresh vegetables. The climatic conditions inside and outside the greenhouse were studied.

An adapted technique of hydroponic culture and nutrient solution circulation and control was used.

The objectives of this study were:

- 1- To study the effect of nutrient solution temperature on tomato growth and yield.
- 2- To study the effect of light intensity on tomato growth and yield.
- 3- To evaluate the effect of environmental conditions inside the greenhouse.
- 4- To evaluate the possibility of using this new technique of hydroponic culture to produce fresh vegetables in houses and other small areas.