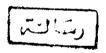
STUDIES ON ROOT-ROT AND WILT DISEASES OF WATERMELON IN NEW

CULTIVATED LANDS

BY


RIAD SODKI RIAD IBRAHEIM EL-MOHAMEDY

A thesis submitted in partial fulfillment of the requirments for the degree of

MASTER OF SCIENCE

In

Agriculture Science
Plant Pathology

Department of Plant Pathology

Faculty of Agriculture

Ain Shams University

1993

Approval Sheet

STUDIES ON ROOT_ROT AND WILT DISEASES OF WATERMELON IN NEW CULTIVATED LANDS

BY

RIAD SODKI RIAD IBRAHEIM EL-MOHAMEDY

B.Sc. : Plant Pathology:, Faculty of Agriculture
Assuit University (1984)

This Thesis for M.Sc. Degree has been approved by:

Prof. Dr. Abd EL-Razik Abd EL-Aleem.Abd EL-Razik All Elayk
Prof. of plant pathology, Fac. of Agric., Assuit University
Prof. Dr. Madeih Mohamed Aly
Prof. of plant pathology, Fac. of Agric., Ain Shams Univers
Prof. Dr. Ibrahiem Sadek Elewa
Prof. of plant pathology, Fac. of Agric., Ain Shams Univers

Data of examination :4/1/

STUDIES ON ROOT-ROT AND WILT DISEASES OF WATERMELON IN NEW CULTIVATED LANDS

Вy

RIAD SODKI RIAD IBRAHEIM EL-MOHAMEDY

B.Sc. "Plant Pathology" Faculty of Agriculture
Assuit University (1984)

Under the supervision of

Prof. Dr. I.S. Elewa Prof. of Plant Pathology, Fac. of Agriculture, Ain Shams University

Prof. Dr. A.A. Morsy
Prof. of Plant Pathology,
Department of plant, pathology
National Research Centre

ABSTRACT

Wilt disease of Watermelon is wide spread all over the cultivated area. It attacks plants through the growing season. The maximum infection occurs after 60 days from sowing in different villages of Noubaria. The infection alternates between 37 and 78%. The fungus responsible of the wilt is <u>Fusarium oxysporum</u> f.sp.niveum. It has a very narrow host range restricted to Watermelon varieties.

The surviving propagules of the fungus after successive exposure to sublethal temperature resulted in H-1 and H-2 isolates. They tolerate relatively high temperature than the mother isolate. They have less enzymatic (PME, PG and Cx)

activity than the mother isolate reflecting their less ver ulence to cause wilt on Watermelon plants. Soil mulching resulted in raise of its temperature by 9.8°C than unmulched one. Population of Fusarium oxysporum f.sp. niveum buried in mulched soil was reduced by 54.7 - 91.8% in artifically infested and mulched soil, consequent reduction in preemergence and wilted plants of Watermelon Gorma and Giza 1 varieties. Soil mulching reduced the total bacterial count. total fungal count, total Fusarium spp. count and total actinomycetes count by different values. Mulching the naturally infested field reduced the pre-emergence dampingoff and wilted plants and increased yield of surviving plants. Benlate 50% and Homi 80% completely inhibited the fungal growth and sporulation on media at 5 ppm, while Rhizolex-T 50% and Vitavax-captan 75% gave the same result at concentration of 200 and 800 ppm respectively. However, Topsin-M 70% inhibited growth and sporulation at 25 ppm. In greenhouse, Benlate 50% and Topsin-M 70% were effective more than the other 3 fungicides in controlling wilt disease. Field experiment clearified that Benlate 50% and Topsin-M 70% were effective in controlling wilt disease, while Vitavax-captan 75% followed by Homi 80% and Rhizolex-T 50% controlled pre-emergence damping-off with higher rate than wilt disease. All tested fungicides increased the yield of surviving Watermelon plants.

ACKNOWLEDGMENT

Deepest thanks and debt of gratitude are owed to Prof. Dr. I.S. Elewa, Prof. of Plant Pathology, Faculty of Agriculture, Ain Sham University and to Prof. Dr. A.A. Morsy, Prof. and head of Plant Pathology Department. National Research Centre, under their supervision and encouraging guidance this wark was completed.

Many thanks to Prof. Dr. S.A.A El-Saaid, Prof. of Plant Pathology, N.R.C., also, many thank for Dr. M.M. Abd El-Kader for their help offered during preparation of this work.

Thanks also to Prof. Dr.M.A. Rasheed Prof. and head of Agricultural & Biological Research Divesion, N.R.C. and many thanks due to Prof. Dr. H. Abd EL-Lateyf Prof. of food Science and Vice Dean of Fac. of Agric. Moshtohor, Zagazig Univ. Banha branch.

Very thanks for all staff members of Plant Pathology Department, Fac. oof Agric., Ain Shams Univ. and N.R.C.

CONTENTS

	Page
INTRODUCTION	1
RIVIEW OF LITERATURE	_
MATERIALS AND METHODS	
EXPERIMENTAL RESULTS	
1- Survey of fusarium wilt of Watermelon at Noubaria	
region	50
2- Assessment of diease development	50
3- Isolation of the causal organisms	53
4- Pathogenicity test	54
5- Host range	57
6- Laboratory studies	
6.1. Effect of heat-treatment on survival of	
Fusarium oxysporum f. sp. niveum	58
6.2. Effect of heat-treatment "in laboratory" on the	
pathogenicity of <u>Fusarium oxysporum</u> f.sp.niveum	. 62
6.3. Effect of different media on linear growth	
and sporulation of Fusarium oxysporum f. sp.	
niveum isolates M, H-1 and H-2	65
6.4. Effect of different incubation degrees of	
temperature on linear growth and sporulation	
of <u>Fusarium</u> oxysporum f. sp. <u>niveum</u> isolates	
M, H-1 and H-2	66
6.5. Fungal enzymes activity	70
7- Disease control	
7.1. Soil mulching	
7.1.1. Effect of soil mulching on soil temperature	
at different depths	75
7.1.2. Effect of soil mulching on the activity of	
Fusarium oxysporum f. sp. niveum at differe	nt
depths of soil	79
7.1.3. Effect of soil mulching on fusarium wilt	
incidence in artificially infested soil	
buried at different depths of soil	81

	Page
7.1.4. Effect of soil mulching on soil microflora	
7.1.4.1. Effect on total bacterial count	87
7.1.4.2. Effect on total fungal count	90
7.1.4.3. Effect on total fusarial count	93
7.1.4.4. Effect on total actinomycetes count	93
7.1.4.5. Effect of soil mulching on fusarium	
wilt incidence and seed yield of	
watermelon	101
7.2. Chemical control	
7.2.1. Effect of some fungicides on linear growth	
and sporulation of Fusarium oxysporum f.sp.	
niveum isolates M, H-1 and H-2	106
7.2.2. Effect of some fungicides on fusarium wilt	
incidence and seed yield of watermelon unde	r
greenhouse and field conditions	
7.2.2.1. Greenhouse experiment	109
7.2.2.2. Field experiment	114
DISCUSSION	121
SUMMARY	137
REFERENCES	141
ARABIC SUMMARY	

LIST OF TABLES

No.		Paọ€
1	Plants that used in host range test of Watermelon fusarium wilt pathogen	34
2	List of fungicides used for testing their effect on the fungal growth, sporulation and the controlling of Fusarium oxysporum f. sp. niveum	46
3-A	Fusarium wilt incidence and distribution on Watermelon grown at Noubaria region during season 1990	51
3-B	Development of fusarium wilt on Watermelon plants at Noubaria region during season 1990	51
4	Fungi isolated from wilted Watermelon plants collected from Noubaria region	53
5	Pathogenicity of different isolates of <u>Fusarium</u> oxysporum isolated from wilted Watermelon plants grown at Noubaria region during season 1990	55
6	Pathogenicity of <u>Fusarium oxysporum</u> the wilt pathogen of Watermelon on some cucuribts and other plant cultivars	57
7	Effect of heat-treatment on germination of spores of Fusarium oxysporum f. sp. niveum isolates M, H-1 and H-2 in water spore suspension	· 60

8	Effect of heat-treatment on germination of spores of
	Fusarium oxysporum f. sp. niveum isolates M, H-1 and
	H-2 mixed with sterilized soil 61
9	Effect of heat-treatment on pathogenicity of Fusarium
	oxysporum f. sp. niveum 63
10	Effect of different media on linear growth and
	sporulation of <u>Fusarium oxysporum</u> f. sp. <u>niveum</u>
	isolates M, H-1 and H-2 after 6 days at 27° C 67
11	Effect of different incubation degrees of temperature
	on linear growth and sporulation of Fusarium oxysporum
	f. sp. niveum isolates M, H-1 and H-2 after 6 days at
	27°C
12	Pectin methylestrase activity in culture filtrates of
	Fusarium oxysporum f. sp. niveum isolates M, H-1, H-2
	grown on Talboys and Bush's medium ammended with
	pectin or glucose72
13	Polygalacturonase (PG) activity in culture filtrates
	of <u>Fusarium oxysporum</u> f. sp. <u>niveum</u> isolates M, H-1, H-
	2 grown on Talboys and Bush's medium ammended with pec-
	tin or glucose 72
14	Cellulase (Cx) activity in culture filtrates of
• .	Fusarium oxysporum f. sp. niveum isolates M. H-1, H-2,
	grown on Talboys and Bush's medium ammended with CMC or
	glucose 74

	Page
23	Reduction in percentage of count of soil microflora
	due to soil mulching 99
24	Effect of soil mulching for different periods on
	fusarium wilt incidence and seed yield of Watermelon
	variety Gorma grown in naturally infested soil at
	Noubaria region 103
25	Effect of different fungicids on linear growth and
	sporulation of <u>Fusarium oxysporum</u> f. sp. <u>niveum</u>
	isolates M, H-1 and H-2 108
26	Effect of different fungicids on fusarium wilt
	incidence on Watermelon var. Giza 1 in artifically
	infested soil with <u>Fusarium oxysporum</u> f. sp. <u>niveum110</u>
27	Effect of different fungicides on fusarium wilt
	incidence on Watermelon var. Gorma in artifically
	infested soil with <u>Fusarium oxysporum</u> f. sp. <u>niveum</u> 112
28	Effect of different fungicides on fusarium wilt
	incidence on Watermelon var. Gorma in naturally
	infested soil at Noubaria region "season 1991"116
29	Effect of different fungicides on fusarium wilt
	incidence on watermelon var. Gorma in naturally
	infesed soil at Noubaria region "season 1992"117
30	Effect of different fungicides on seed yield of
	Watermelon var. Gorma at Noubaria region "seasons 1991
	and 1992"

List of Figures

No.	Pag
(1): Development of fusarium wilt on Watermelon plants at Noubaria region during season 1990	52
(2): Pathogenicity of different isolates of <u>Fusarium</u> oxysporum isolated from wilted Watermelon plants grown at Noubaria region during 1990 season	56
(3): Effect of heat-treatment on pathogenicity of <u>Fusarium</u> oxysporum f. sp. <u>niveum</u>	64
(4): Effect of different media on linear growth and sporulation of <u>Fusarium oxysporum</u> f. sp. <u>niveum</u> isolates M, H-1 and H-2	68
(5): Effect of different incubation degrees of temperature on linear growth and sporulation of <u>Fusarium oxysporum</u> f. sp. <u>niveum</u> isolates M, H-1 and H-2	69
(6): Effect of soil mulching for different periods on fusarium wilt incidence on Watermelon var. Giza 1, in artifically infested soil with Fusarium oxysporum f. sp. niveum	83
(7): Effect of soil mulching for different periods on fusarium wilt incidence on Watermelon Var. Gorma in artifically infested soil with Fusarium oxysporum f. sp. niveum	86
(8): Effect of soil mulching for different periods on bacterial total count in soil "seasons 1990 and 1991"	89

INTRODUCTION