EVALUATION OF SOIL TESTS FOR PREDICTING TOXIC ELEMENTS STATUS IN SOME EGYPTIAN SOILS

Sh. Sh. SHEDINE SHEH

SHERINE SHEHATA MOURID

B.Sc. Agric.(Soil Sci.), Ain Shams University, 1992

A thesis submitted in partial fulfillment

Of

992

the requirements for the degree of MASTER OF SCIENCE

56912

in

Agriculture (Soil Science)

Department of Soil Science Faculty of Agriculture Ain Shams University

1999

APPROVAL SHEET

EVALUATION OF SOIL TESTS FOR PREDICTING TOXIC ELEMENTS STATUS IN SOME EGYPTIAN SOILS

BY

SHERINE SHEHATA MOURIDE

B.Sc. Agric. (Soil Sci.), Ain Shams University, 1992

This thesis for M.Sc. degree has been approved by :

(Prof. of Soil Sci., Fac. of Agric., Ain Shams University)

Date of examination 26/7/1999

EVALUATION OF SOIL TESTS FOR PREDICTING TOXIC ELEMENTS STATUS IN SOME EGYPTIAN SOILS

BY

SHERINE SHEHATA MOURID

B.Sc. Agric. (Soil Sci.), Ain Shams University, 1992

Under the supervision of:

Prof. Dr. A. I. METWALLY
Prof. of Soil Sci., Fac. of Agric., Ain Shams University

Prof. Dr. I.W. HAFEZ
Prof. of Soil Sci., Soil Chemistry Unit, Desert Research Center

Ass. Prof. Dr. M. Abd EL-Fatah
Ass. Prof. of Soil Sci., Fac. of Agric., Ain Shams University

ACKNOLEDGMENT

The author wishes to express his appreciation and deep gratitude to **Prof. Dr. Abdel-Alim I. Metwally** The Chairman and Professor of Soil Science, Faculty of Agriculture, Ain Shams University for suggesting the problem, his valuable supervision, sincere guidance, splendid assistance, constructive criticisms and for his indulgence in the intellectual and diligent discussions.

Sincere are also extended to **Prof. Dr. I. W. Hafez**Professor of Soils and Head of Soil Chemistry Unite, Desert
Research Center for his encouragement and valuable help in
accomplishing this study.

The author wishes also to express his gratefulness and thanks to **Dr. Mohmed Abd El-Fatah** Associated Professor of Soil Science, Faculty of Agriculture, Ain-Shams University for his help during the course of his study.

ABSTRACT

SHERINE SHEHATA MOURID Evaluation of soil tests for predicting toxic elements status in some Egyptian soils. Unpublished M.Sc., University of Ain Shams, Faculty of Agric., Department of Soil Science. 1999.

Total and extractable heavy metal contents varied widely between soils of different locations and pollution sources and within the same location and reflected soil parent material and type and level of pollution .

The lower values of Pb, Cd, Ni and Co characterized sewage treated sandy soils of El-Gabal El-Asfar while higher values characterized the industrially polluted soils. The effect of prolonged irrigation with sewage effluent on heavy metal accumulation was quite evident.

The distribution of different heavy metal fractions varied with the heavy metal, the soil texture and the source of pollution. Most soil Pb was in the carbonate fraction specially in sewage treated soils and the sulfide fraction. Cd predominated in the sulfide fraction and in the exchangeable and soluble fractions specially in sewage treated soils with sulfide is the dominant fraction specially in the industrially polluted soils.

The heavy metal fraction that contributed most to the uptake differed with the source of pollution. In the industrially polluted soils, this fractions were sorbed Pb, exchangeable Cd, Ni, carbonate and sorbed Co accounting for 62, 74, 80 and 87 % of the variations in the uptake. In sewage treated soils, however, these fractions were Pb sulfide, Cd carbonate, organic Ni and exchangeable Co accounting for 95, 99, 85 and 96 % of the variations in the uptake.

EDTA was the most reliable soil test to estimate Pb and Cd bioavailability in the investigated soils especially sewage treated soils. Both DTPA and EDTA, in general, successfully estimated Ni bioavailability in all polluted soils, although DTPA proved superior in

soils affected by industrial wastes . In industrially polluted soils, however, DTPA was superior to assess Co bioavailability while in sewage irrigated soils EDTA is recommended .

Key words: Soil tests, bioavailability, heavy metal, toxic elements.

Contents

	Page
1-INTRODUCTION	1
2-REVIEW OF LITERATURE	2
2.1 Total and extractable heavy metals in soil	2
2-1-1 Lead	2
2-1-2 Cadmium	4
2-1-3 Nickel	6
2-1-4 Cobalt	8
2-1-5 Heavy metal contents in sewage effluent irrigated soils	10
2.2. Soil Factors affecting Heavy Metals Behaviour in Soil	11
2.2.1 Soil textured and clay mineralogy	11
2.2.2 Soil pH	12
2.2.3 Soil Organic matter	14
2.2.4 Correlations between soil properties and available heavy metal	
content	15
2.3. Heavy metals content in plants	16
2.3.1 Toxicity and tolerance	17
2-4-Fractionation of heavy elements in soil	18
2-5 Soil tests for heavy metals bioavailability	21
3- MATERIALS AND METHODS	. 23
3-1 Soil Samples	23
3-2 Soil Analysis	24
3-3 Sequential extraction of heavy metal form in soil	27
3-4 Pot Experiments	. 27
3-5 Plant Analysis	28
3-6 Statistical Analysis	. 28
4. RESULTS AND DISCUSSION	30
4.1 Total and Chemically Extractable Heavy Metals in Soil	30
4.1.1 Total and extractable Pb	30
4.1.1.1 Soil properties and chemically extractable Lead	34
4.1.2 Total and extractable Cd	34

4.1.2.1 Soil properties and chemically extractable cadmium	39
4.1.3 Total and extractable Ni	39
4.1.3.1 Soil properties and chemically extractable nickel	44
4.1.4 Total and extractable Co	46
4.1.4.1 Soil properties and chemically extractable cadmium	48
4.1.5 Conclusion	50
4.2 Heavy metal fractions in polluted soils as determined by sequential	
extraction	51
4.2.1 Fractionation of soil Pb	52
4 .2.2 Fractionation of soil Cd	54
4.2.3 Fractionation of soil Ni	56
4.2.4 Fractionation of soil Co	56
4.3 Heavy metals content and uptake by plant	59
4.4 Correlations between heavy metal forms in soils and plant uptake	66
4.5 Soil testing for heavy metal bioavailability in polluted soils	78
4.5.1 Soil testing for Pb bioavailability in polluted soils	78
4.5.2 Soil testing for Cd bioavailability in polluted soils	81
4.5.3 Soil testing for Ni bioavailability in polluted soils	.83
4.5.4 Soil testing for Co bioavailability in polluted soils	85
5. SUMMARY AND CONCLUSION	88
6. REFERENCES	93
- ARABIC SUMMARY	1

List of Tables

Table (1) Locations of the investigated soils23
Table (2) Some physical characteristics of the studied soils25
Table (3) Some chemical characteristics of the studied soils26
Table (4) Total and extractable Pb (mg/kg soil) in different polluted soils31
Table (5) Correlation coefficients between soil variables and total and
extractable Pb
Table (6) Total and extractable Cd (mg/kg soil) in different polluted soils 36
Table (7) Correlation coefficients between soil variables and total and
extractable Cd40
Table (8) Total and extractable Ni (mg/kg soi) in different polluted Soils 41
Table (9) Correlation coefficients between soil variables and total and
extractable Ni45
Table(10) Total and extractable Co (mg/kg soi) in different polluted
soils47
Table(11)Correlation coefficients between soil variables and total and
extractable Co49
Table (12) Pb fraction in polluted soils as determined by Sposito's method
Of sequential extractions53
Table (13) Cd fraction in polluted soils as determined by Sposito's method
Of sequential extractions55
Table (14) Ni fraction in polluted soils as determined by Sposito's method
Of sequential extractions57
Table (15) Co fraction in polluted soils as determined by Sposito's method
of sequential extractions58
Table (16) Pb content (µg/g) and uptake (µg/g) by Corn and Faba bean plants
Grown in different polluted soils60
Table (17) Cd content (μg/g) and uptake (μg/g) by Corn and Faba bean plants
grown in different polluted soils62
Table (18) Ni content (μg/g) and uptake (μg/g) by Corn and Faba bean plants
grown in different polluted soils64
Γable (19) Co content (μg/g) and uptake (μg/g) by Corn and Faba bean plants

grown in different polluted soils
Table (20) Correlation coefficients between Pb uptake and various soil Pb
Fractions extracted by Sposito's method of sequential extraction 67
Table (21) Stepwise regression analysis between Pb uptake and soil Pb
chemical fractions extracted by Sposito's method of sequential
extraction68
Table (22) Correlation coefficients between Cd uptake and various soil Cd
fractions extracted by Sposito's method of sequential extraction. 70
Table (23) Stepwise regression analysis between Cd uptake and soil Cd
chemical fractions extracted by Sposito's method of sequentia
extraction71
Table (24) Correlation coefficients between Ni uptake and various soil Ni
fractions extracted by Sposito's method of sequential extraction73
Table (25) Stepwise regression analysis between Ni uptake and soil Ni
chemical fractions extracted by Sposito's method of sequentia
extraction74
Table (26) Correlation coefficients between Co uptake and various soil Co
fractions extracted by Sposito's method of sequential extraction. 75
Table (27) Stepwise regression analysis between Co uptake and soil Co
chemical fractions extracted by Sposito's method of sequentia
extraction77
Table (28) Dry weight (µg/pot) of Corn and Faba bean plants grown in
different polluted soils
Table (29) Correlation coefficients between total and chemically extracted Pb
and content and uptake of Pb by plant
Table (30) Correlation coefficients between total and chemically extracted Cd
and content and uptake of Cd by plant82
Table (31) Correlation coefficients between total and chemically extracted Ni
and content and uptake of Ni by plant
·
Table (32) Correlation coefficients between total and chemically extracted Co
and content and uptake of Co by plant