A STUDY ON THE EXTRACTION OF AROMATIC HYDROCARBONS FROM LIGHT PETROLEUM FRACTIONS WITH POLAR SOLVENTS

A THESIS

Submitted To

Faculty of Science, Ain Shams University

By

Magdy Tadrous Zaky Gowl

B.Sc. (Honour, 1983)

541.3482 M.T.

For

The Degree of Master of Science

In

Physical Chemistry

EGYPTIAN PETROLEUM RESEARCH INSTITUTE
Refining Department

1995

A STUDY ON THE EXTRACTION OF AROMATIC HYDROCARBONS FROM LIGHT PETROLEUM FRACTIONS WITH POLAR SOLVENTS

A THESIS

Submitted To

Faculty of Science, Ain Shams University

By

Magdy Tadrous Zaky

B.Sc. (Honour, 1983)

For

The Degree of Master of Science

In

Physical Chemistry

EGYPTIAN PETROLEUM RESEARCH INSTITUTE

Refining Department

1995

A STUDY ON THE EXTRACTION OF AROMATIC HYDROCARBONS FROM LIGHT PETROLEUM FRACTIONS WITH POLAR SOLVENTS

THESIS ADVISORS

- 1. Prof. Dr. S.A. Abo-El-Enein
- 2. Ass. Prof. Dr. F.M.M.Farag
- 3. Dr. M.S. Mohammed

APPROVED

S.A. Ab-FI Enem M.S. Mohammed

Prof. Dr. A.F.M. Fahmy

Head of Chemistry Department

A-f.M. Fahmy

NOTES

This is to certify that Mr. Magdy Tadrous Zaky, has attended and passed successfully the following post graduate courses as a partial fulfilment of the requirements of the degree of Master of Science, during the academic year 1990.

COURSES

- 1- Reaction Kinetics
- 2- Thermodynamics
- 3- Surface Chemistry
- 4- Catalysis
- 5- Physical Properties of Polymers
- 6- Computer Science
- 7- Cement Chemistry
- 8- Quantum Chemistry
- 9. Electro-Chemistry
- 10-Corrosion
- 11-English Language

Prof.Dr. A.F.M.Fahmy

Head of Chemistry Department

Faculty of Science

Ain Shams University

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation and deep gratitude to **Prof. Dr. S. A. Abo-El-Encin**, Prof. of Physical Chemistry and Cement Materials, Faculty of Science, Ain Shams University, for his constant guidance, encouragement and supervision throughout this work.

The author is greatly indebted to Ass. Prof. Dr. F.M.M. Farag, who is working in the Egyptian Potroloum Research Institute, for his advice, help and supervision during this work.

The author expresses his thanks to **Dr. M.S.Mohammed**, who is working in the **Egyptian Potroloum Rosearch Institute**, for suggesting the subject of this work, his sincere efforts, support and talented supervision throughout this work.

The author expresses his deep thanks to **Prof.Dr. M.H.Yousif**, Prof. in Refining Department, **Egyptian Petroloum Research Instituto**, for most helpful suggestion, constant interest and guidance throughout this work.

Thanks are also due to **Egyptian Petroloum Research Instituts**, for providing me with all the available facilities in the **Refining Department** to carry out this work.

CONTENTS

P	age
CHAPTER I- INTRODUCTION AND OBJECT OF INVESTIGATION	1
I.A- INTRODUCTION	1
I.A.1- IMPORTANCE OF LIQUID-LIQUID EXTRACTION	
IN SEPARATION OF C6-C8 AROMATIC	
HYDROCARBONS	4
I.A.1.1- Sources of the Feed	4
a- Coke Oven Gasoline	4
b- Catalytic Reforming	5
c- Pyrolysis Gasoline	5
d- Hydrodealkylation of Toluene	5
I.A.1.2- Separation Possibilities	6
a- Azeotropic Distillation	6
b- Extractive Distillation	8
c- Liquid-Liquid Extraction	9
I.A.1.3- Development in Extraction Processes	11
I.A.2- EXTRACTION EQUILIBRIA	14
I.A.2.1- Means of Presentation of Equilibrium Data	14
a- Binary Systems	14
b-Ternary Systems	16
i- Triangular Diagrams	16
ii- Rectangular Coordinates	18
c- Methods Used for the Determination of Ternary	
Liquid-Liquid Equilibrium Data	20
i- The Analysis Method	20

ii- The Titration Method	20
iii-The Construction Method	21
d- System Types	22
i- Type I Systems	23
ii-Type II Systems	25
e-Tie Line Correlations	26
f- Data Prediction	29
g- Prediction of Distribution	30
i- Calculation of Activity-Coefficient Curves	
from a Single Vapor-Liquid Data	32
ii- Calculation of Activity Coefficients	
from Compositions of Liquid and Vapor	
at Known Pressures, without Knowledge	
of Temperature	33
iii- Calculation of Activity Coefficients	
from Mutual Solubility Data	33
iv- Estimation of Activity Coefficients in the	
Absence of Data	35
v- Other Methods in Prediction of Distribution	35
- Critical Solution Temperature	36
- Hydrogen Bonding and Internal Pressure	36
I.A.3- PHYSICAL AND CHEMICAL PROPERTIES OF THE	
SOLVENTS USED IN AROMATICS EXTRACTION	
AND CRITERIA OF SELECTION	38
I.A.3.1- Properties Related to the Solubility Parameters	38
a- Selectivity	38
b- Solvent Power	39

c- Aromatics Range	41
I.A.3.2- Properties Related to Mass Transfer	
and Phase Separation	42
a- Density and Viscosity	42
b- Interfacial Tension	45
I.A.3.3- Properties Related to Recovery of the Solvents	45
a- Latent Heat of Vaporization	45
b- Volatility and Relative Volatility	45
c- Boiling Point	46
d- Thermal and Chemical Stability	46
e- Solvent Solubility	47
I.A.3.4- Other Important Properties for Choicing	
a Good Solvent	47
a- Toxicity	47
b- Corresion	48
c- Cost and Availability	48
I.A.4- PRINCIPAL INDUSTRIAL PROCESSES USED IN	
EXTRACTION OF LIGHT AROMATIC	
HYDROCARBONS (BTX)	49
I.A.4.1- Extraction with Diethylene glycol	51
I.A.4.2- Extraction with Sulfolane	53
I.A.4.3- Extraction with N-Methyl pyrrolidone	54
I.A.4.4- Extraction with N-Formylmorpholine	55
I.A.4.5- Extraction with Tetraethylene glycol	56
I.A.4.6- Extraction with Dimethylsulphoxide	56
I.B- OBJECT OF INVESTIGATION	64

CHAPTER II- MATERIALS AND EXPERIMENTAL TECHNIQUES	65
II.A- MATERIALS	65
II.B- EXPERIMENTAL TECHNIQUES	67
CHAPTER III- RESULTS AND DISCUSSION	69
III.A- STUDY THE INFLUENCE OF DIFFERENT PARAMETE	RS
ON THE EXTRACTION OF BTX AROMATICS WITH A	
MIXED SOLVENT SYSTEM	69
III.A.1- PURE HYDROCARBON-MIXED SOLVENT SYSTEM	MS
	71
III.A.1.1- Influence of Type and Composition of the Mixe	d
Solvent on the Solubility Parameters of the Pur	e
Hydrocarbon-Mixed Solvent Systems	94
a- Selectivity and Distribution Coefficient	94
b- Purity of the Products	103
c- Aromatic Recovery	106
III.A.1.2- Influence of Different Concentrations of the	
Aromatics in the Feed	110
III.A.2- REFORMATE MIXED-SOLVENT SYSTEMS	116
III.A.2.1- Influence of Temperature	124
a- Influence of Temperature on the Mutual Solubilit	ty
and the Dissolvation Properties of the Reformate	:-
Mixed Solvent Systems	127
III.A.2.2- Influence of Solvent to Feed Ratios	137
a- Influence of Solvent to Feed Ratios on the Solubi	lity
Parameters of the Reformate-Mixed	
Solvent System	137

CHAPTER IV- SUMMARY AND CONCLUSIONS	143
REFERENCES	145
ARABIC SUMMARY	

CHAPTER I

INTRODUCTION AND OBJECT OF INVESTIGATION

INTRODUCTION

CHAPTER I

INTRODUCTION AND OBJECT OF INVESTIGATION

I.A - INTRODUCTION

The demand for aromatic derivatives will continue its relatively rapid growth over the next ten years due to the increasing number of uses being discovered for the products derived from aromatics⁽¹⁾, and according to the new report⁽²⁾, global benzene demand reached 22.3 MMton in 1992. Now this market represents a significant business interest to most petroleum and chemical companies. Since most of the aromatics used today are derived from petroleum refining operations.

In the petrochemical industry, aromatics are obtained from two primary sources: (1) catalytic reforming of naphtha, and (2) naphtha obtained from an olefins plant operation⁽¹⁾.

The aromatic hydrocarbons benzene, toluene and xylene (BTX) are amongst the most important raw materials in the petrochemical industry. The greatest demand is for benzene, of which 40 % is processed to styrene, 20 % to caprolactam and to phenol, and the remainder to maleic anhyride, aniline and a large number of other chemical compounds. The consumption of xylene, which is almost exclusively processed to o-phthalic acid and teraphthalic acid, takes second place. The considerably lower demand for toluene is reflected by its distinctly lower price⁽³⁾.

The production structure⁽⁴⁾ of (BTX) in Western European is represented in Fig. 1.

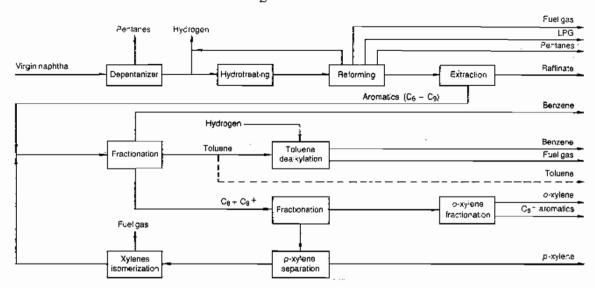


Fig. 1 - Basic Western European BTX production scheme

The chemicals made from petroleum are very important to the world's economy. While they constitute only 7% of the volume of petroleum used, their high value and very broad utilization in manufactured end-products make them an important contributor to world employment and GNP (Gross National Product)⁽⁵⁾.

The C₆-C₈ fraction can be sent to solvent extraction where the BTX is physically separated from the non-aromatics. Solvent extraction processes have been invented to extract aromatics from the feed with solvents which preferentially dissolve the aromatics. Some of the most popular solvents in major use today are sulfolane, N-methylpyrrolidone and various glycols such as mono-di-tri and tetra-ethylene glycols. The cost of an aromatics extraction process is related directly to the quantity of solvent required for a given feedstock. In recent years, process improvements have been aimed at reducing the solvent- to-feed ratio. These improvements were made primarily with catalytic reformate as a feedstock that contained aromatics in about 50 percent concentration. The increased aromatics concentrations will tend to force the solvent - to - feed ratios back to higher values. Research activities may soon