
BIOLOGICAL NITROGEN FIXATION BY SESBANIA SPP

Aliaa Mohamed Abd-El-Kader Ibrahim

A thesis submitted in partial Fulfillment

630.276 A.M

of.

the requirements for the degree of Master of science

In

Agriculture Science

Agricultural

(Microbiology)

Department of Agric. Microbiology

Faculty of Agriculture

Ain Shams University

BIOLOGICAL NITROGEN FIXATION BY SESBANIA SPP

BY

Aliaa Mohamed Abd-El-Kader Ibrahim

A thesis submitted in partial Fulfillment of the requirements for the degree of Master of science

In
Agriculture Science
Agricultural
(Microbiology)

Department of Agric. Microbiology

Faculty of Agriculture

Ain Shams University

1994

APPROVAL SHEET

BIOLOGICAL NITROGEN FIXATION BY SESBANIA SPP.

BY

Aliaa Mohamed Abd-El-Kader Ibrahim

B.Sc. in Agric. Microbiology, Fac. of Agric.,
Ain Shams Univ. 1986

This thesis for M. Sc. degree has been approved by:

Prof. Dr. M.R.Gohar

11003.0

Prof. of Agric. Microbiology, Fac. Agric., Cairo Univ.

Prof. of Agric. Microbiology, Fac. of Agric.,

Ain Shams Univ.

Prof. Dr. Y.Z. Ishac

125

Prof. of Agric. Microbiology, Fac. of Agric.,
Ain Shams Univ., (Supervisor)

Date of Examination / /1994

BIOLOGICAL NITROGEN FIXATION BY SESBANIA SPP

BY

Aliaa Mohamed Abd-El-Kader Ibrahim

B.Sc. (Agric. Microbiol.) 1986

Ain Shams University

Under the supervision of :

Prof. Dr. Y.Z. Ishac

Prof. of Agric. Microbiology, Dept. of

Agric. Microbiol., Fac. Agric.,

Ain Shams Univ.

Prof.Dr. M.H. El-Lakany

Adjunct prof. of Forestry, Alexandria Univ., and Desert Development Center, American Univ., in Cairo.

Dr. A.A.Abd-El-Hafez.

Ass. Prof. of Agric. Microbiology, Dept. of Agric. Microbiol., Fac. Agric., Ain Shams Univ.

ABSTRACT

Sesbania sesban and S. rostrata were compared with respect to their interactions with the two microsymbionts Rhizobium sesbani and Azorhizobium caulinodans ORS 571, their responses to soil fertilization with N and P and also their potentiality as green manure for maize. Azo.

caulinodans ORS 571, appeared to stimulate growth and N content of <u>S</u>. <u>sesban</u>. The two hosts showed maximum responses to ammonium sulfate when applied at rates of 20 and 60 mg N kg⁻¹ soil for <u>S</u>. <u>sesban</u> and <u>S</u>. <u>rostrata</u>, respectively. However, the addition of 200 mg superphosphate kg⁻¹ soil was particularly effective for both hosts. <u>S</u>. <u>rostrata</u>, as a green manure, was superior to <u>S</u>. <u>sesban</u> and other tested legumes in enhancing growth and N content of maize plants.

ACKNOWLEDGMENT

This work has been carried out under the supervision and direction of Prof. Dr. Y.Z. Ishac, Prof. of Agric. Microbiology, and head of unit of the Biofertilizers, Fac. Agric., Ain Shams Univ., Prof. Dr. M.H.El-Lakany Director of Desert Development Center, American Univ., in Cairo and Dr. A.A. Abd-E-Hafez. Assis. Prof. of Agric-Microbiology, Dept of Agric. Microbiology, Fac. Agric., Ain Shams Univ. I wish to express my deepest gratitude to them for suggesting the problem, supervision, keeping interest and progressive criticism.

Invaluable appreciation is due to Dr. M.I. Mostafa, Lecturer of Agric. Microbiology, Dept of Agric. Microbiology, Fac. Agric., Ain Shams Univ., for his fruitful scientific assistance and unfailing efforts for producing this manuscript.

Special thanks are also extended to Dr. Y.R.Dommergues Ex-Director of B. S. F. T. (ORSTOM)-CIRAD-Fayet., Nogent sur Marne, France and Dr. B.L. Dreyfus, Director of ORSTOM-Dakar-Senegal, for providing materials necessary for experimental purposes and also their fruitful scientific communications.

Thanks are due to all my colleagues staff members in the Unit of Biofertilizers, Department of Agric. Microbiology, Fac. Agric., Ain Shams Univ., and Desert Development Center, American Univ. in Cairo, Sadat City, Research Station, for their help and encouragement.

LIST OF CONTENTS

	Page
1. Introduction	1
2. Review and Literature	4
2.1. <u>Sesbania-Rhizobium</u> symbiosis	4
2.1.1. Characteristics of <u>Sesbania</u> spp.	4
2.1.2. Characteristics of <u>Sesbania</u> rhizobia	5
2.2. Host-Endophyte interactions	10
2.2.1 Nodule forming ability	10
2.2.2. Nodule characteristics	12
a- Root nodules	12
b- Stem nodules	12
2.2.3. The nodulation process in S. rostrata	14
2.2.3.1. Nodulation sites on the stems	15
2.2.3.2. Genesis of stem nodules	16
2.2.4. N ₂ -fixing potential of <u>Sesbania</u> spp.	17
1.2.4.1- S. bispinosa	18
2.2.4.2 S. grandiflora	19
1.11.1 S. sesban	20
2.2.4.1- S. rostrata	20
2.3. Environmental conditions affecting growth and	
nodulation of <u>Sesbania</u>	21
2.3.1. Climatic conditions	21
2.3.2. Soil conditions	22
2.3.2.1. Soil moisture	22
2.3.2.2. Soil nitrogen	24
2.3.2.3. Salinity, alkalinity and soil pH	26

2.4. Use of <u>Sesbania</u> as green manure	29
3. MATERIALS AND METHODS.	33
3.1. Materials	33
3.1.1. Seeds	33
3.1.2. Soil	33
3.1.3. Bacterial inoculants	34
3.1.4. Plant nutrients	34
3.1.4.1. Chemical fertilizers	34
3.1.4.2. Mineral nutrient solutions	36
a. Modified Hoagland solution	37
b. Sally Smith solution	37
3.1.5 Media used	38
3.2. Methods	38
3.2.1 Preparation of materials for experimentation	38
a. Growth medium	38
b. <u>Sesbania</u> seeds	3 9
c. Sodium alginate based inoculants	39
3.2.2. Design and experimental techniques	39
3.2.2.1. Ability of Rhizobium sesbani and Azorhizobium	
caulinodans ORS 571 to nodulate five species	
of <u>Sesbania</u>	3 9
3.2.2.1. Response of <u>S. sesban</u> and <u>S.rostrata</u> to	
inoculation with Rhizobium sesbani,	
Azorhizobium <u>caulinodans</u> ORS 571 or their	
combination in sterilized and non-sterilized	
soil.	40

3.2.2.	.3. Effects of inoculation with Azorhizobium	
	caulinodans ORS 571 compared with other	
	rhizobacteria on growth and yield of maize plants.	41
3.2.2.	.4 Effects of nitrogen and phosphate fertilization on	
	growth, nodulation and chemical contents of	
	Sesbania sesban and Sesbania rostrata	43
3.2.2	.5 Use of stem and/or root nodulated legumes as green	
	manure for maize.	43
3.2.3	. Growth conditions of plants	45
3.2.4	. Parameters measured	46
3.2.5	. Physical and chemical determinations	47
3.2.5	.1- Mechanical analyses of the soil	47
3.2.5	.2- Moisture contents	47
3.2.5	.3- Organic carbon	47
3.2.5	.4- Total nitrogen	47
3.2.5	.5- Total phosphorus	47
3.2.5	.6- Total potassium	47
3.2.5	.7- Calcium carbonate	47
3.2.5	.8- Total soluble salts	47
3.2.5	.9- Electrical conductivity (EC)	48
3.2.5	.10- Exchangeable sodium percentages (ESP)	48
3.2.5	.11- Soil pH	48
3.2.6	. Statistical analysis	48
4- RE	SULTS	49
4.1.	Ability of Rhizobium sesbani and Azorhizobium	
2	caulinodans ORS 571 to nodulate five species of	
9	Sesbania	60

4.2. Response of \underline{S} . $\underline{\text{sesban}}$ and \underline{S} . $\underline{\text{rostrata}}$ to inoculation	
with Rhizobium sesbani, Azorhizobium caulinodans or	
their combination in sterilized and non-sterilized soil	49
4.2.1. In sterilized soil	49
a. <u>Sesbania</u> <u>sesban</u>	51
b. <u>Sesbania rostrata</u>	56
4.2.2. In non sterilized soil	63
a <u>Sesbania</u> <u>sesban</u>	64
b <u>Sesbania rostrata</u>	66
4.3. Effects of inoculation with Azorhizobium caulinodans	
ORS 571 and other rhizobacteria on growth and yield	
of maize plants	69
a. Growth	69
b. Corn and straw yield	71
4.4. Effects of nitrogen and phosphate fertilization on	
growth, nodulation and chemical contents of Sesbania	
sesban and Sesbania rostrata	74
4.4.1. Effects of nitrogen fertilization	74
4.4.1.1. Statistical main effects of nitrogen source and	
nitrogen concentration on <u>S</u> . <u>sesban</u>	74
4.4.1.2. Interaction of nitrogen source and nitrogen	
concentration on growth, nodulation and N content	
of <u>S</u> . <u>sesban</u>	77
a Growth	77
b. Nodulation	81
c. Nitrogen percentages and contents 23	83

4.4.1.3. Statistical main effects of nitrogen source and	
nitrogen concentration on S. rostrata	8.5
4.4.1.4. Interacting effects of nitrogen source and nitrogen	
concentration on <u>S</u> . <u>rostrata</u>	88
a. Growth	88
b. Nodulation	90
c. Nitrogen percentages and contents	95
4.4.2. Effects of phosphate fertilization	95
4.4.2.1. Statistical main effects of ammonium sulfate, urea	
or phosphate concentration on S. sesban.	95
4.4.2.2. Interacting effects of ammonium sulfate, urea and	
3 levels of superphosphate on <u>S</u> . <u>sesban</u>	99
a Growth	99
b Nodulation	102
c. Nitrogen and phosphate contents	104
4.4.2.3. Statistical main effects of ammonium sulfate, urea	
or phosphate concentration on S. rostrata	1 07
4.4.2.4 Interacting effects of ammonium sulfate, urea and	
3 levels of superphosphate on <u>S</u> . rostrata	1 07
a Growth	107
b Nodulation	112
c Nitrogen and phosphorus contents	_
4.5. Use of stem and/or root nodulated legumes as green	115
manures for maize.	710
4.5.1. Growth and chemical contents of the tested	118
leguminous hosts	
703cmT11000 1100C0	118

4.5.2. Effects of green manuring and mineral fertilization	
on growth and nitrogen contents of maize plants	122
DISCUSSION	126
APPENDEX	
SUMMARY	136
REFERENCES	144
ADARTO CHANADA	

LIST OF TABLES

	Page
3.1	Species and Sources of seeds of host plants used
	in this investigation. 34
3.2	Physical and Chemical analyses of the soil used. 35
3.3	Species and Sources of bacterial cultures used as
,	inoculants 36
4.1	Ability of Rhizobium sesbani and Azorhizobium
	caulinodans ORS 571 to nodulate five species of
	Sesbania 50
4.2	Effects of inoculation with Rhizobium sesbani,
	Azorhizobium caulinodans ORS 571 or their
	combination on growth, nodulation and N-content
	of <u>Sesbania</u> <u>sesban</u> grown on non sterilized soil. 65
4.3.	Effects of inoculation with Rhizobium sesbani,
	Azorhizobium caulinodans ORS 571 or their combination
	on growth, nodulation and N content of Sesbania
	rostrata grown on non sterilized soil.
4.4.	Effects of inoculation with Azorhizobium caulinodans
	ORS 571 combined with half dose of mineral N compared
	with other rhizobacteria or full dose of mineral N on
	heights (cm), shoot and root dry weights (g plant) of
	maize plants (Zea mays cv. Hageen Fardy) after 70 days
	of cultivation. 70
4.5	Effects of Azorhizobium caulinodans ORS 571 combined
	with those of mineral N compared with other
	rhizobacteria or full dose of mineral N on corn yield