STUDIES ON VIRAL DISEASES OF STONE-FRUITS

A thesis submitted in partial fulfillment $\qquad \qquad \text{of} \qquad \qquad \text{the requirement for the degree of}$

Master of Science

in

Agriculture

(Plant Pathology)

45797

632.8 A.A

Plant Pathology Department
Faculty of Agriculture
Ain Shams University

APPROVAL SHEET

STUDIES ON VIRAL DISEASES OF STONE-FRUITS

Ву

AMAL ABO EL-ELLA AHMED

B.Sc. Agric. Science (Plant Pathology)

Cairo University (1983)

Date of examination: 9/8/1994.

CONTENTS

		Page
	ABSTRACT	i
	ACKNOWLEDGMENT	ii
	LIST OF TABLES	iii
	LIST OF FIGURES	iv
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	3
3	MATERIALS AND METHODS	17
	3.1. Viral infection survey	17
	3.2. Isolation	18
	3.3. Identification	18
	3.4. Cytopathological studies	27
	3.5. Virus distribution in the infected trees	
	during the different growing seasons	29
	3.6. Effect on some characters of stone fruits .	30
4	RESULTS	32
	4.1. Viral infection survey	32
	4.2. Isolation	36
	4.3. Identification	36
	4.3.1. Host range	36
	4.3.2. Modes of transmission	52
	4.3.2.1. Mechanical transmission	52
	4.3.2.1.1. Sap inoculation	52
	4.3.2.1.2. Rubbing freshly cut surface	52
	4.3.2.1.3. Slashing method	53

		Page
	4.3.2.2. Insect transmission	54
	4.3.2.3. Graft transmission	54
	4.3.2.4. Seed transmission	55
	4.3.3. Physical properties	63
	4.4. Cytopathological studies	67
	4.4.1. Light microscopy	67
	4.4.2. Electron microscopy	69
	4.5. Distribution and concentration of PPV within	
	the infected trees	75
	4.6. Effect on some characters of stone fruits .	80
5	DISCUSSION	82
6	SUMMARY	100
7	REFERENCES	107
8	ARABIC SUMMARY	

ACKNOWLEDGMENTS

The outher wishes to express her deepest gratitude to, Dr.M.H.El-Hammady, Prof. of Plant Pathology, Plant Pathology Dept., Fac. of Agric., Ain Shams Univ., Dr. H.M. Mazyed, Director, Plant Pathology Research Institute, Agriculture Research Center (ARC), Ministy of Agriculture, and Dr. F.M. Abo El-Abbas, Assoc. Prof. of Plant Pathology, Plant Pathology Dept., Fac. of Agric. Ain Shams Univ., for their valuble supervision, suggestion, guidance and encouragement during this study.

Thanks are also due to Dr. S.H.M. El-Deeb, Assoc. Prof. of Plant Pathology, Plant Pathology Dept., Fac. of Agric., Ain Shams Univ., and Dr. M.K. Nakhla, Prof. of Plant Pathology, Plant Virus & Mycoplasma Section, Plant Pathology Research Institute, ARC, Ministry of Agriculture, for their sincere help and progressive criticism.

A lot of thanks are also due to head and staff members of Plant Virus & Mycoplasma Section, Plant Pathology Institute, ARC, Ministry of Agriculture, for their help offered in the present work.

LIST OF FIGURES

No.		Page
	(1).	Chlorotic spots and mosaic symptoms of PPV
		on Amar apricot leaves during summer season 42
	(2).	Symptoms of PPV on Amar apricots Leaves
		during spring season. Chlorosis patterns
		(A & B) 43
	(3).	Symptoms of natural infection with PPV
		on Hamawy apricot fruits A: healthy, B
		and C: deep irregular lines on fruit
		surface 44
	(4).	Stones of healthy (A) and PPV-infected Amar
		apricot fruits (B,C&D) showing yellow rings
		with brown center and gummy secretions 45
	(5).	Fruit symptoms of naturally infected plums (cv.
		Butey) with plum pox virus showing different
		spots (A,B,C) discoloration of skin and
		beginning of piting (sharka symptoms) (B&C)
		and flesh turned brownish-red where is in
		contact with the stones (D) 46
	(6).	Banding and clearing of main-and sub-veins
		followed with twisting of GF 305 peach
		leaves after 1-2 months from graft inocu-
		lation with plum pox virus 47

(13). Graft transmission

61

(14).	Transmission electron micrograph of a thin
	section of mesophyll cell of healthy apricot
	leaf (cv. Amar), showing the cell walls (CW)
	plasmodesmata(PL), nucleus (NU), chloroplasts
	(CL) and vacuoles (V). (Bar = 3 micrometers,
	(10,000 X) 71
(15-17).	Transmission electron micrographs of thin
	sections of mesophyll cells of apricot leaves
	(cv. Amar) infected with PPV (Bars = microme-
	ters).15, The cytoplasm is highly vesiculated
	with abundant pinwheels and scrolls (17,000X)
	.16, Virus like particles (arrows), situated
	between the arms of pinwheel inclusions
	(46,000 X) 17, Laminated inclusions LT
	appressed to cell wall (CW) near the plas-
	modesmata (PL) and the virus aggregates
	(VA) (28,000 X) 72
(18-21).	Transmission electron micrographs of
	mesophyll cells of apricot leaves (cv.
	Amar) infected with PPV, (Bars = micro-
	meters) .18, Desorganized chloroplasts
	(Ch) with ruptured envelope and swollen
	stromal thylakoids (arrows). Pinwheels
	(arrow heads) and virus aggregates are
	seen close to the chloroplasts
	(28,000 X). 19-21 Irigularly shaped

NO.		Page
	nucleus(NU) with crystalline nuclear	
	inclusion bodies (NIB).19 (36,000 X);	
	20 (6,000 X); 21 (13,000 X)	. 73
(22-25).	Transmission electron micrographs of thin	
	sections of apricot leaves (cv. Amar)	
	infected with PPV. (Bars = micrometers).	
	22, Irrigularly shaped nucleus (NU)	
	nuclear inclusion body (NIB). The virus	
	particles (arraws) are lining the edge	
	of the tonoplast arround the vacuole (V)	
	(28,000 X). 23, The pinwheel near the	
	mitochondria (M) and the virus particles	
	(arrows) are living the tonoplast(28,000X)	
	24, The cell wall (CW), the paramural	
	bodies (arrow), the microinclusions	
	(smoller arrows), and the vacuole (V)	
	(46,000 X) 25, A membranous body	
	(arrow) near the cell wall (CW)	
	(28 000 X)	74

LIST OF TABLES

No.	Pa	ge
(1).	Natural infection of apricot, peach and plum trees	
	with PPV at different locations during different	
	months and seasons as detected by ELISA	34
(2).	Percentage of natural infection with PPV disease	
	on three apricot cultivars growing at El-Fayium	
	governorate (1987 season)	35
(3).	Reaction of tested plants to mechanical inoculation	Į,
	with the isolated virus. Infectious sap was	
	extracted from apricot and peach leaves using	
	different buffers	39
(4).	Transmissibility of plum pox virus by using	
	different hosts and methods of inoculations	
	(indexed as No. of infected plants/inoculated	
	ones)	56
(5).	Physical properties of plum pox virus. Infectious	
	crude sap was extracted from Pisum sativum cv.	
	Express Alaska and used to inoculated different	
	local lesion and systemic hosts	
	A: Thermal inactivation point (TIP)	64
	B: Dilution end point (DEP)	65
	C: Longivety <u>in</u> <u>vitro</u> (LIV)	66
(6).	Detection of different inclusion bodies of PPV	
	in epidermal leaf strips of some inoculated	
	systemic hosts using different stains	68

No.	Pi	age
(7).	Distribution and concentration of PPV in apricot	
	trees during the growing season of 1991 as	
	determined by ELISA and expressed by O.D.	
	using Spectophotometer	76
(8).	Distribution and concentration of PPV in peach	
	trees during the growing season of 1991 as	
	determined by ELISA and expressed by O.D.	
	using Spectophotometer	78
(9).	Effect of natural infection with PPV on some	
	fruit characters at ripen stage of stone fruit	
	trees (apricot, peach and plum)	81

STUDIES ON VIRAL DISEASES OF STONE-FRUITS

Βv

AMAL ABO EL-ELLA AHMED

B.Sc. Plant Pathology Faculty of Agriculture, Cairo University (1983).

Under Supervision of:

- 1- Prof. Dr. M.H. El-Hammady Prof. of Plant Pathology, Fac. of Agriculture, Ain Shams University.
- 2- Prof. Dr. H.M. Mazyed
 Prof. of Plant Pathology & Director of Plant Pathology
 Research Institute, ARC.
- 3- Dr. F. M. Abo El-Abbas
 Associate Prof. of Plant Pathology, Fac. of Agriculture,
 Ain Shams University.

ABSTRACT

Plum pox virus (PPV), detected in some naturally infected apricot, peach and plum trees. Plum pox virus was found to be widly spread in stone fruit trees growing in different governorates. Among 5283 trees, the virus was detected in 1105 (67.5%) apricot, 111 (12.5%) peach and 1250 (60%) plum.

The virus was transmitted mechanically (by using some special treatments), aphids and grafting but not through the infected seeds. The virus reduced apricot yield by about 31% as well as fruit juice volume, humidity content, vitamin A and total carbohydrates. On the contrary, the virus increased the pH and total phenoles of the infected fruits.

The distribution of the virus in the different parts of the infected trees was un even. Infected leaves contained 3 different types of inclusion bodies. Electron microscopy revealed the existence of several cytopathological changes in the infected apricot leaves.

Key words

Plum pox virus (PPV)-Sharka disease-Stone fruitsviruses-ELISA - Inclusion bodies - Cytopathological changes.

1. INTRODUCTION

Apricot, peach and plum are the most important stone fruit trees grown in Egypt. They are cultivated in many governorates specially El-Behera, Beni-Sweif, El-Dakahlia, El-Faiyum, El-Gharbia, El-Giza, El-Kalubia, El-Minofia, North Sinia and El-Sharkia.

The areas devoted to apricot, peach and plum trees in 1982 were about 4600, 2684 and 5299 feddans producing an average of 22.857, 9.157 and 12.150 tons, respectively. The cultivated areas have increased in 1990 to 5900, 23.904 and 7600 feddans producing an average of 29.550, 100.006 and 54.488 tons, respectively.

Stone fruit trees are subjected to infection with several viruses. Among such viruses, plum pox virus is considered to be very important one (Kerlan and Dunez, 1976). In addition to plum trees, the virus attaks apricot, peach and some other related plants (Pemberton, 1980). The plum pox virus is widely spread in many countries, causing severe losses to the infected trees (Dunez and Sutic, 1989).

The first report on the occurence of this disease in Front was appeared in 1987 (Dunez, 1988). No of

Accordingly, the present work aimed to study the following items:

- Disease survey on stone trees at different locations, as well as the spread of infection on different apricot cultivars.
- Isolation and identification of the causal isolate(s).
- Cytopathological changes due to virus infection.
- Virus distribution within the infected trees and its effect on some fruit characters.