# Ain-Shams University Faculty of Engineering Computer and Systems Engineering Department

## Adaptive Control using Neural Networks

A thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

(Computer and control)

By

621.38195

Eng. Yasser Hassan Mohamed Mohamed El-hadad

Supervised by

Prof. Dr. Abdel-Monem Wahdan

91896

#### **Examination Committee**

Signature

## 1- Prof. Dr. Mohamed Fahim Hassan

Professor, Electronics and Communication Eng. Dept.

Faculty of Engineering, Cairo University.

#### 2- Prof. Dr. Mohamed A. Sheirah

Professor and Chairman of Computer and Systems Eng. Dept.

Faculty of Engineering, Ain shams University.

## 3- Prof. Dr. Abdel-Monem Wahdan

Professor, Computer and Systems Eng. Dept.

Faculty of Engineering, Ain shams University.

Date: /4/9/1995



#### **Acknowledgment**

I wish to express my deepest gratitude towards professor A. M. Whadan for allowing me to undertake this work under his supervision. It has been my total pleasure to work with him. I would also thank professor whadan for his continuous guide during my work.

I wish also to thank all the members of the computer and systems engineering department, Ain-Shams university, for their suport during preparation of this thesis.

I would also like to thanks all the EOIP team for their continuous inspiration during may work in this thesis.

#### **STATEMENT**

The dissertation is submitted to the faculty of Engineering Ain Shams University for degree of master of science in Electrical Engineering (Computer and systems division).

The work included in this thesis was carried out by the author in the department of computer and control, Faculty of Engineering, Ain Shams University, from 1991 to 1995.

No part of this thesis has been submitted for a degree or a qualification to any other university or institution.

Name: Yasser Hassan Mchamod

Date: 2-19/95

Signature: Yasser Hassan

#### **Abstract**

In this thesis we have made a survey for the existing neural network learning algorithms and we give the advantages and disadvantages of each one. Also we suggest to use a learning algorithm for training neural network which overcomes the problems with the current available neural network learning algorithms; this is the random optimization algorithm. We use the teacher forcing concept to modify neural network learning algorithms to increase the training speed and enhance the generalization accuracy.

The structure of neural network, its complexity has been studied. Guide rules for the selection of; initial weights, network parameters (number of layers and number of hidden nodes), training data and data preprocessing are presented.

System identification using neural networks is an important item in neural network applications. We describe the available neural network configurations for system identification and the different methods to implement the dynamics within the neural networks. Prediction of the system output for k-step ahead is also described using neural networks. Finally a simulation problem is carried out to show the power of neural network models for system identification and prediction.

In this thesis we consider the generalized predictive control approach as a reference of comparison. We have also carried out simulation for this approach. A complete survey of the different available neural network configurations to control a dynamical systems and the problems associated with each one are given with simulation for each, using the same example. Also we give a configuration where the neural network replaces the predictor in the control structure profiting of its high performance in prediction.

A comparative study between the performance of the generalized predictive control of linear systems and the neural network controllers, is carried out. We conclude that using the neural networks in the predictive control configuration gives satisfactory results. Neural networks prove that it can be a powerful method to build a generalized adaptive controller.

### **Contents**

| Acknowledgment                                   |         |
|--------------------------------------------------|---------|
| Abstract                                         |         |
| Contents                                         |         |
| List of Figures                                  |         |
| Nomenclature                                     |         |
|                                                  | Page No |
| Chapter 1. Introduction                          | 1       |
| 1.1. Introduction to Neural Networks.            | 3       |
| 1.2. Introduction to adaptive control systems.   | 8       |
| 1.3. Thesis Objectives.                          | 11      |
| 1.4. Thesis Organization.                        | 12      |
| Chapter 2. Neural Network Learning Algorithms.   | 14      |
| 2.1. Neural network architectures.               | 14      |
| 2.1.1. Feedforward neural networks.              | 14      |
| 2.1.2. Feedback or recurrent neural networks.    | 15      |
| 2.1.3. Associative neural networks.              | 15      |
| 2.1.4. Radial Basis function networks.           | 16      |
| 2.1.5. Higher order or Functional link networks. | 16      |
| 2.1.6. Adaptive logic networks.                  | 17      |
| 2.2. Introduction to neural network learning     | 20      |
| algorithms.                                      |         |
| 2.2.1. Supervised learning algorithms.           | 21      |
| 2.2.2. Unsupervised learning algorithms.         | 21      |

| 2.2.3. Reinforcement learning algorithms.       | 22 |
|-------------------------------------------------|----|
| 2.3. Training NN using Backpropagation learning | 24 |
| algorithm.                                      |    |
| 2.3.1. The Original Backpropagation learning    | 26 |
| algorithm.                                      |    |
| 2.3.1.1. Backpropagation algorithm with         | 30 |
| momentum.                                       |    |
| 2.3.1.2. Problems associated with               | 32 |
| Backpropagation.                                |    |
| 2.3.2. Algorithms for Selecting Backpropagation | 34 |
| learning parameters.                            |    |
| 2.3.3. Algorithm uses modified performance      | 40 |
| measure of the network.                         |    |
| 2.3.4. Algorithm for Modifying slope of the     | 43 |
| activation function.                            |    |
| 2.4. Training NN using Blind Optimization       | 46 |
| algorithms.                                     |    |
| 2.4.1. Training NN using Random Optimization    | 46 |
| learning algorithm.                             |    |
| 2.4.1.1. Basic random optimization              | 46 |
| algorithms.                                     |    |
| 2.4.1.2. A multimembered evolution              | 49 |
| strategy algorithm for training                 |    |
| Neural Networks.                                |    |
| 2.4.2. Training NN using Genetic algorithms     | 52 |
| (GAs).                                          |    |

| 2.4.2.1. Genetic algorithm definitions.                   | 53 |
|-----------------------------------------------------------|----|
| 2.4.2.2. Genetic algorithm operators.                     | 54 |
| 2.4.2.3. Application for training NN.                     | 56 |
| 2.5. Teacher Forcing algorithm to Increase training       | 60 |
| speed.                                                    |    |
|                                                           | (2 |
| Chapter 3. A guide to the selection of the Neural Network | 63 |
| parameters, network testing and validation.               |    |
| 3.1. Selection of the NN initial weights.                 | 63 |
| 3.2. Selection of the NN number of nodes and              | 65 |
| number of layers.                                         |    |
| 3.2.1. Problems associated with selection of              | 66 |
| network structure.                                        |    |
| 3.2.2. Algorithms for selecting initial network           | 68 |
| size.                                                     |    |
| 3.2.3. Algorithms for Pruning trained Neural              | 71 |
| Network.                                                  |    |
| 3.2.3.1. Network reduction through                        | 72 |
| Estimation of network                                     |    |
| sensitivity.                                              |    |
| 3.2.3.2. Algorithm for network                            | 74 |
| reduction through Slope                                   |    |
| Competition.                                              |    |
| 3.2.3.3. Algorithm of dynamic node                        | 76 |
| creation (DNC).                                           |    |

| 3.3. A guide to the selection of the NN training data    | 80  |
|----------------------------------------------------------|-----|
| and data pre-processing                                  |     |
| 3.3.1. Selection of the NN training data.                | 80  |
| 3.3.2. Data Pre-processing for NN training.              | 82  |
| Chapter 4. System identification using Neural Networks.  | 85  |
| 4.1. Different NN configurations for system              | 86  |
| identification.                                          |     |
| 4.2. Using NN for multi-step ahead prediction.           | 91  |
| 4.3. Simulation Results.                                 | 94  |
| Chapter 5. Control of dynamic systems using adaptive and | 108 |
| Neural techniques.                                       |     |
| 5.1. Adaptive control using GPC algorithm.               | 109 |
| 5.1.1. Prediction of the process output.                 | 110 |
| 5.1.2. GPC control law.                                  | 112 |
| 5.1.3. A guide to selection of the GPC                   | 114 |
| parameters.                                              |     |
| 5.1.4. Simulation results.                               | 116 |
| 5.2. Neural Network configurations used for control.     | 128 |
| 5.2.1. Neural direct adaptive controller.                | 128 |
| 5.2.2. Neural indirect adaptive controller.              | 132 |
| 5.2.3. Neural predictive controller.                     | 136 |
| 5.3. Simulation Results.                                 | 138 |
| Chapter 6 Conclusions and future work                    | 143 |

| 6.1. Summary and conclusions. | 143 |
|-------------------------------|-----|
| 6.2. Future work.             | 145 |
| References.                   | 147 |

#### List of Figures

- Fig. (1.1). Mathematical representation of a neuron.
- Fig. (1.2). Structure of Neural networks.
- Fig. (1.3). Classes of adaptive controllers.
- Fig. (1.4). Block diagram for the model identification adaptive controllers.
- Fig. (2.1). Structure of the higher order neural network.
- Fig. (2.2). Structure of the adaptive logic network.
- Fig. (2.3). Plot of the sigmoid function for different values of  $\beta$ .
- Fig. (2.4). Diagram for the backward propagation in the BP algorithm.
- Fig. (2.5). Diagram for the angles used in BP adaptive training algorithm.
- Fig. (2.6). Diagram for the ratio of the current and previous learning rate as a function of the angle  $\theta_n$ .
- Fig. (2.7). Diagram for the sigmoid function derivative.
- Fig. (2.8). Diagram for the genetic algorithm cycle.
- Fig. (2.9). Diagram for the learning algorithm without teacher forcing.
- Fig. (2.10). Diagram for the learning algorithm with teacher forcing.
- Fig. (3.1). Flow chart for the DNC algorithm.
- Fig. (3.2). Training neural network to learn XOR function using DNC algorithm.

- Fig. (4.1). Neural network learning configuration for the identification case.
- Fig. (4.2). Block diagram of the neural network identifier with different identification modes.
- Fig. (4.3). Block diagram of recall mode for pattern learning.
- Fig. (4.4). Block diagram of recall mode for recurrent learning.
- Fig. (4.5). Structure of the filtered neuron output.
- Fig. (4.6). Response of part 1 of the model to I/P PRBS.
- Fig. (4.7). Response of part 2 of the model to I/P PRBS.
- Fig. (4.8). Response of part 3 of the model to I/P PRBS.
- Fig. (4.9). Response of part 4 of the model to I/P PRBS.
- Fig. (4.10). Response of part 5 of the model to I/P PRBS.
- Fig. (4.11). Response of the overall model to I/P PRBS.
- Fig. (5.1). Simulation model reference input.
- Fig (5.2). Simulation result of the GPC for  $N_2=4$ .
- Fig (5.3). Simulation result of the GPC for  $N_2=10$ .
- Fig (5.4). Simulation result of the GPC for  $N_2$ =20.
- Fig (5.5). Simulation result of the GPC for NU=2.
- Fig (5.6). Simulation result of the GPC for NU=3.
- Fig (5.7). Simulation result of the GPC for NU=4.
- Fig (5.8). Simulation result of the GPC for  $\lambda$ =0.05.

- Fig. (5.9). Simulation result of the GPC for  $\lambda$ =0.5.
- Fig. (5.10). Simulation result of the GPC for  $\lambda$ =0.9.
- Fig. (5.11). Block diagram of the model free direct controller.
- Fig. (5.12). Block diagram of the model based direct controller 1.
- Fig. (5.13). Block diagram of the model based direct controller 2.
- Fig. (5.14). Block diagram of the first neural indirect controller.
- Fig. (5.15). Block diagram of the second neural indirect controller.
- Fig. (5.16). Block diagram of the neural predictive controller.
- Fig. (5.17). Simulation result for the neural model based direct controller.
- Fig. (5.18). Simulation result for the neural indirect controller 1.
- Fig. (5.19). Training data for the neural indirect controller 2.
- Fig. (5.20). Simulation result for the neural indirect controller 2.
- Fig. (5.21). Simulation result for the neural predictive controller.