et at plo anniad

THE CLASSIFICATION OF COMPLEX ANALYTIC MAPS

ON COMPLEX ANALYTIC MANIFOLDS

THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE M.S.C. DEGREE

المساليق

ВΥ

ZEINAB A.M. EL-SADI

6982

7 8

SUBMITTED AT

AIN SHAMS UNIVERSITY

FACULTY OF SCIENCE

DEPARTMENT OF FURE MATHEMATICS

M. SC. COURSES STUDIED BY THE AUTHOR (1971-1972)

(i)	Theory	of func	tions	s of ma	atrices	2 hour	s par	week
		(during	the:	whole	academic	year)		

(ti) Numerical linear algebra2 hours per week(iii) Abstract algebra2 hours per week(iv) Functional analysis2 hours per week(v) Partial differential equations2 hours per week

R.H. Muka)

PREFACE

The purpose of the thesis is to study the classification of the analytic map of the analytic map of the analytic map which we call a fully analytic map, with M a complex analytic manifold and G/H the space of all cosets of a in G, G being a complex Die group and H a closed subgroup of G.

Indeed, we prove the following theorem:

Let $\Phi: T^{(s+1)}(M) \longrightarrow L(G/H)$ be a fully analytic map, then there exists an analytic map $\Phi: M \longrightarrow G/H$ such that $\Phi = w \circ d\Phi$ on T(M), where w is a vector form and $d\Phi$ is a tangent map.

Throughout the dissembation all manifolds, maps, vector bundles, cross sections are supposed to be analytic of class \mathbb{C}^{W} .

The layout of the thesis is as follows.

The Chapter I, we give a short review of some facts which we shall need later on.

In Chapter II, we give the proof of the theorem stated above. Chapter III, is devoted to some applications of the theorem.

wash

I which to acknowledge my deepest gratitude and than Kfulness to Dr. Munir Mursi for suggesting the topic of the thesis, for his kind supervision and for his invaluable help during the preparation of the thesis.

I should like to express my sincerest thanks to Prof. Ir. Ragy H. Makar for his kind help and encouragement.

$\underline{\underline{C}} = \underline{\underline{O}} = \underline{\underline{N}} = \underline{\underline{T}} = \underline{\underline{E}} = \underline{\underline{N}} = \underline{\underline{T}} = \underline{\underline{S}}$

	PAGE
CHAPTER I: GENERAL SURVEY ON COMPLEX	
ANALYTIC MANIFOLDS.	1
CHAPTER II: THE PROOF OF OUR THEOREM ON	
CHAPTER II: THE PROOF OF OUR INDOREM ON	
THE CLASSIFICATION OF ANALYTIC MAPS	
ON COMPLEX ANALYTIC MANIFOLDS.	23
CHAPTER III: SOME APPLICATIONS.	4 5
REFERANCE	53

CHAPTER I

A GENERAL SURVEY ON COMPLEX ANALYTIC MANIFOLDS

In this chapter we give some preliminaries which will be used later on. We mention briefly some properties of, and some structures on, complex analytic manifolds, tangent spaces, Lie groups and Lie algebras.

The chapter is divided into three sections:

- Complex analytic manifolds, tangent spaces and distributions.
- 2. Some concepts on the theory of L ie groups and L ie algebras.
- 3. Theory of fibre bundles.

Throughout this chapter we give some examples to explain the ideas of the definitions and concepts which are basic in our work.

1. COMPLEX ANALYTIC MANIFOLDS, TANGENT SPACES and DISTRIBUTIONS

Throughout this section we follow [1], [2], [3] and [8]. Definition (1.1.1): A complex analytic manifold of dimension n is a Hausdorff space covered by neighbourhoods each of which homeomorphic to a cell in an n-dimensional complex space, C^n (i.e., there is a finite open covering $\{U_{\infty}\}$ and for each α ,

$$u_{\alpha}: U_{\alpha} \longrightarrow C^{n}$$
,

that, for any two neighbourhoods U_{α} and U_{β} with non-empty intersection, the map:

$$u_{\beta} \circ u_{\alpha}^{-1} : u_{\alpha} (U_{\alpha} \cap U_{\beta}) \longrightarrow u_{\beta} (U_{\alpha} \cap U_{\beta})$$

is an analytic map.

The above conditions are called a complex analytic structure and the pair (u_{\swarrow} , u_{\swarrow}) is called a local chart.

Definition (1.1.2): The functions defining u_{∞} are called local coordinates in U_{∞} . Also, if $(z^1, \ldots, z^n) \in C^n$, then the system of functions z^1 o u_{∞} , z^2 o u_{∞} , ..., z^n o u_{∞} defined in U_{∞} is called a local coordinate system in U_{∞} and simply written as $\{z^i\}$ $i=1,\ldots,n$

Definition (1.1.3): U_{∞} is defined to be a cubic neighbour-nood of a point $p \in M$, if it is possible to find a chart (U_{∞}, U_{∞}) such that $U_{\infty}(p)$ is the origin of C^n defined by:

$$|z^1| < b, \ldots, |z^n| < b$$

for a positive number b.

Remark (1.1.1): A complex manifold has an even-dimension, for there is a one-to-one correspondence between complex coordinates (z^1, \ldots, z^n) and real coordinates ($x^1, \ldots, x^n, y^1, \ldots, y^n$), by setting:

$$z^k = x^k + \sqrt{-1} \quad y^k \quad ; \quad k = 1, \dots, n$$
 with $\overline{z}^k = x^k - \sqrt{-1} \quad y^k$ is the conjugate of z^k .

Example (1.1.1): The n-dimentional complex vector space, C^n , forms a complex analytic manifold. For the identity map I in C^n , together with the chart (C^n , I) forms a complex structure on C^n .

Example (1.1.2): The complex projective space P_n (= space of complex lines through the origin in C^{n+1}) forms a complex manifold where the complex structure is introduced as follows:

Let (t_0, t_1, \dots, t_n) be complex coordinates on P_n , and define:

(i)
$$U_j = \{ p \in P_n : t_j (p) \neq 0 \}$$
, for $j = 0,1,2,...,n$.

(ii) The analytic functions

Thus (U_j , u_j) forms a chart for all $j=0,1,\ldots,n$ and then the complex structure is introduced.

Let M be a complex analytic manifold, p be any point of M and let \P (p) denote the algebra of all analytic functions defined in a neighbourhood of p.

Definition (1.1.4): A complex tangent vector Xp at $p \in M$ is a map:

such that:

$$X_p (af + bg) = a X_p f + b X_p g,$$

$$X_{p} (fg) = f(p) (X_{p} g) + (X_{p} f) (g(p))$$

for all $a,b \in C$ and $f,g \in \mathcal{F}(p)$.

All tangent vectors at a point p \in M form a vector space $T_{\rm p}$ (M) over C.

Definition (1.1.5): The tangent space T (M) is defined to be ${}^{U}_{p}\,\varepsilon\,\,M\,\,{}^{T}_{p}\,\,(M)\ .$

 $\begin{array}{ll} \text{Admark (1.1.2):} & \text{Let } \left\{ Z^{\underline{i}} \right\}_{\ \underline{i} \leq \underline{i} \leq n} \text{ be a local coordinate} \\ \text{System at } p \in M, \text{ then } \left\{ \frac{\delta}{\delta \, Z^{\underline{i}}} \right\}_{\ \underline{i} \leqslant \underline{i} \leqslant n} \text{ form a basis for } T_p(M). \end{array}$

 $\frac{\text{generic (1.1.3):}}{\delta \text{ min}} \ \frac{T_p}{\delta \text{ min}} \ \text{(M) is a 2n-dimensional real vector space,}$

Let N and M be two analytic manifolds.

Definition (1.1.6): The map $\Phi: \mathbb{N} \longrightarrow \mathbb{N}$ is said to be analytic at a point $p \in \mathbb{N}$, if for each $f \in \mathcal{F}$ ($\Phi(p)$), for Φ is an analytic function at $p \in \mathbb{N}$.

permittion (1.1.7): Let $\phi:\mathbb{N}$ be an analytic map at a point $p \in \mathbb{N}$, then the differential of ϕ is the (tangent) map

$$d \varphi : T_{p} (M) \longrightarrow T_{d(p)} (M)$$

provided that:

$$\left\{ d + (X_p) \right\} \quad f = X_p \left(f \circ \phi \right),$$

for $X_p \in T_p$ (N) and $f \in \mathcal{F}_p$ (M).

<u>Proposition (1.1.1)</u>: Let M_1 , M_2 and M_3 be three analytic manifolds . Considering any two analytic maps:

$$\Phi: \quad M_1 \longrightarrow M_2,$$

$$\Psi: \mathbb{M}_2 \longrightarrow \mathbb{M}_3$$

we have $d(\psi \circ \varphi) = d\psi \circ d\varphi$.

Proof:

Let $p \in M_1$, $r \in \psi$ (\$\phi\$(p)) and $h \in \mathcal{F}(r)$.

Then it is clear that

ho $(\Psi \circ \varphi) = (h \circ \Psi) \circ \varphi$ in any neighbourhood of p. By using definition (1.1.7) we have

$$\left[a \left(\Psi \circ \varphi\right) X_{p}\right] h = X_{p} \left[h \circ \left(\Psi \circ \varphi\right)\right]$$

$$= X_{p} [(h \circ \psi) \circ \phi]$$

$$= d\phi(X_{p}) (h \circ \psi)$$

$$= d\psi[d\phi(X_{p})] h.$$

Thus $d(\Psi \circ \varphi) = d\Psi \circ d\varphi$.

Q.E.D.

Definition (1.1.8): The analytic map $\phi: \mathbb{N} \longrightarrow \mathbb{M}$ is said to be regular at $p \in \mathbb{N}$ if $d\phi_p$ is an injective mapping.

Definition (1.1.9): The analytic map $\phi: \mathbb{N} \longrightarrow \mathbb{N}$ is called an analytic diffeomorphism, if ϕ^{-1} is an analytic map.

Definition (1.1.10): A subset N of a manifold M is called a submanifold if:

- (1) H is itself an analytic manifold,
- (2) The injective map $\phi: \mathbb{N} \longrightarrow \mathbb{M}$ is regular.

Let q, n be the dimensions of N,M respectively. $\underline{\text{Definition}(1.1.11)} \colon A \text{ closed submanifold N of a manifold M}$ is a submanifold such that:

- (1) Φ (N) is closed in M where Φ : N \longrightarrow M
- (2) If $p \in \mathbb{N}$, then there is a neighbourhood U of p with local coordinates (Z^1, \ldots, Z^n) such that $\mathbb{N} \subseteq \mathbb{U}$ is the set of points in M at which Z^{q+1}, \ldots, Z^n all vanish.

Definition(1.1.12): A vector field X on M is a map,

 $X: M \longrightarrow T(M): p \longrightarrow X_p$, for each $p \in M$. The vector field X is said to be analytic at $p \in M$ if for each $f_{g}(p)$, Xf is analytic at p, where Xf is defined by $(Xf)_{p} = X_{p}f$.

The vector field X can be expressed by

$$X = \sum_{i} a^{i} \frac{\partial}{\partial z^{i}}$$

with respect to a local coordinate system $\left\{Z^i\right\}_{1 \leq i \leq n}$ where the components a^i are functions defined in a neighbourhood of $\left\{Z^i\right\}_{1 \leq i \leq n}$.

If ϵ^i 's are analytic functions, then the vector field is analytic.

Definition(1.1.13): Let X,Y be two analytic vector fields on M. The commutator, [X,Y], of X and Y is defined by $[X,Y]_pf = X_p(Yf) - Y_p(Xf)$, $f \in F(p)$.

The bracket [X,Y] is also an analytic vector field.

For, let

$$X = \sum_{aj} \frac{\partial}{\partial z^{j}}$$
, $Y = \sum_{bj} \frac{\partial}{\partial z^{j}}$.

Then

$$[X,Y] f = X (Yf) - Y (Xf)$$

$$= \sum_{a^{j}} \frac{\partial}{\partial z^{j}} (\sum_{b^{k}} \frac{\partial f}{\partial z^{k}}) - \sum_{b^{j}} \frac{\partial}{\partial z^{j}} (\sum_{a^{k}} \frac{\partial f}{\partial z^{k}})$$

$$= \sum_{j,k} (a^{j} \frac{\partial b^{k}}{\partial z^{j}} - b^{j} \frac{\partial a^{k}}{\partial z^{j}}) \frac{\partial f}{\partial z^{k}}.$$

Thus

$$[x,y] = \sum_{j,k} (a^{j} \frac{\partial b^{k}}{\partial z^{j}} - b^{j} \frac{\partial a^{k}}{\partial z^{j}}) \frac{\partial}{\partial z^{k}}.$$

Hence [X,Y] is a vector field with components

$$e^{jk} = a^{j} \frac{\partial b^{k}}{\partial Z^{j}} - b^{j} \frac{\partial a^{k}}{\partial Z^{j}}$$
.

Since a^j , b^j are analytic functions, then c^{jk} is analytic and [X,Y] is an analytic vector field.

The commutator has the following properties:

(1)
$$\left[ax, by \right] = ab \left[x, y \right]$$
 for $a, b \in C$

$$(2) \quad [X,Y] = - \quad [Y,X]$$

(3)
$$[[x,y],z] + [[y,z],x] + [[z,x],y] = 0$$
,

which is called Jacobividentity.

Definition (1.1.14): A distribution \triangle of dimension r on a complex analytic manifold M is a law which assigns to every point p \in M a subspace \triangle (p) of dimension "r" of $T_p(M)$. \triangle is called analytic, if every point $p \in M$ has a neighbourhood U and r-analytic vector fields. X_1, \ldots, X_r on U, such that X_{1p}, \ldots, X_{rp} form a basis for \triangle (p) at $p \in U$.

The set $\{X_1,\ldots,X_r\}$ is called a local basis for the distribution \triangle in a neighbourhood of p.

Definition (1.1.15): \triangle is called involutive, if whenever X and Y belong to \triangle , then so does their Poisson's braket [X,Y].

Definition (1.1.16): An integral manifold of \triangle is a connected submanifold N of M such that \triangle (p) coincids with T_p (N), for every $p \in \mathbb{N}$. When all integral manifolds of \triangle coincide with N, this integral manifold is called a maximal integral manifold.

We refer to Chevally [2] for the proof of the following theorem.

Theorem (1.1.1): Let \triangle be an involutive analytic distribution on M. Through every point p \in M, there passes a unique maximal integral manifold $T_p(N)$ of \triangle .

32. SOME CONCEPTS ON THE THEORY OF LIE GROUPS and LIE ALGEBRAS

Through this section we make use of [2],[4],[5] and [11].

Dy a connected complex analytic manifold we mean a complex analytic manifold such that its topological space is connected, or in other words, if it is an arc-wise connected.

Definition (1.2.1): A (connected) complex analytic Lie group, is a group G which is a (connected) complex analytic manifold such that

$$G \times G \longrightarrow G$$
; (a,b) $\longrightarrow ab^{-1}$ is a complex analytic map.

Now let G be a complex analytic \mathbf{L} ie group, then we have :