
# STUDIES ON SOME NATURAL ENEMIES ATTACKING SCALE INSECTS AND MEALY BUGS IN QUALUBIA PROVINCE



#### BY

### HAMED ELDEMERDASH ASHMAWE SAKR

B. Sc. (Agriculture, Entomology), 1986 Fac. of Agric. Ain Shams Univ.

632.7 H.A

u8126

A Thesis Submitted in Partial fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in
Agriculture (Entomology)

Plant Protection Department Faculty of Agriculture Ain Shams University 1994



## STUDIES ON SOME NATURAL ENEMIES ATTACKING SCALE INSECTS AND MEALY BUGS IN QUALUBIA PROVINCE

#### BY

### HAMED ELDEMERDASH ASHMAWE SAKR

B. Sc. (Agriculture, Entomology), 1986 Fac. of Agric. Ain Shams Univ.

This Thesis for M. Sc. Degree has been approved by:

Professor Dr. G. N. Rezk

Professor of Economic Entomology,
Faculty of Agriculture
Ain Shams University.

Professor Dr. A. H. Amin A. Amin Professor of Economic Entomology, Faculty of Agriculture Ain Shams University.

Date of examination. 11/4 / 1994



# STUDIES ON SOME NATURAL ENEMIES ATTACKING SCALE INSECTS AND MEALY BUGS IN QUALUBIA PROVINCE

#### BY

#### HAMED ELDEMERDASH ASHMAWE SAKR

B. Sc. (Agriculture, Entomology), 1986 Fac. of Agric. Ain Shams Univ.

#### Under the Supervision of:

Prof. Dr. A. H. Amin
Professor of Economic Entomology,
Faculty of Agricultre
Ain Shams University

Prof. Dr. A. M. A. Hekal

Professor of Economic Entomology,
Faculty of Agricultre

Ain Shams University

Dr. Madieha, A. Rezk
Assistnat Professor. of Economic Entomology,
Faculty of Agricultre
Ain Shams University

#### **ABSTRACT**

The black scale insect, Chrysomphalus ficus Ashmead was considered as key pest on citrus orchards since the end of

nineteen century uptill the end of sixth decade of twentieth century. Afterwards, the population of this pest began to decrease gradually in the successive years. Nowadays, it is not easy to find an orchard infested with this scale insect. The factors responsible about this phenomenon are unrecognizable uptill these studies.

The ecological data about *C. ficus* and its natural enemies were obtained by half-monthly counts on navel orange leaves from a citrus orchard at El-Kanater El-Khiria, Qualubia Governorate from 1<sup>st</sup> February, 1989 to mid-January 1990. The seasonal fluctuation in the total population as well as the seasonal variations of the different developmental stages showed that this species had four annual periods of seasonal activities and four annual generations, viz. spring generation form 1<sup>st</sup> February to mid-May; summer generation from 1<sup>st</sup> June to 1<sup>st</sup> August; autumn generation from mid-August to mid-October; winter generation from 1<sup>st</sup> November to mid-January.

The natural enemies of C. ficus were recorded and carefully identified throughout the ecological studies. species of ectoparasitoid, Aphytis holoxanthus DeBach which recorded for the first time in Egypt; three species of endoparasitoids, Aspidiotiphagus citrinus Craw.,; A. lounsburyi Paoli and Habrolepis pascuorum Mercet entomogenous fungus, Cladosporium cladosporioides The seasonal activities for these natural were recorded. were represented by actual numbers as well enemies percentages of parasitism throughout the half-monthly counts. Statistical analysis of the data clarify that the combined effects of these bioagents (ectoendo- parasitoids entomogenous fungus) and main climatic factors (mean temperature and mean % R.H.) were responsible as a group on the activities of C. ficus specially during spring and seasonal winter generations; while the same factors had lesser effects during summer and autumn generations.

Therefore, the phenomenon of scarcity of the black scale insect probably due to the effects of the previously mentioned

these natural enemies while had the opportunity to parasitized on this insect pest especially A. holoxanthus.

Morphological and biological studies were carried out on ectoparasitoid, Aphytis holoxanthus on C. ficus under The different developmental stages of laboratory conditions. the parasitoid were described and their measurements were esti-The duration of the different stages were estimated. The type of diets provided to adults had highly significant effects on both sexes. The honey, seemed to be the most appropriate food for the adults of parasitoid. It gave the proloned oviposition periods and the longevity of both female and male. Moreover, it caused an increase in the rate of egg laying/female.

Four species of entomogenous fungi were isolated and identified from *C. ficus*, these species are: *Cladosporium cladosporioides*, *Alternaria* sp., *Ulocladium* sp. and *Diplodia* sp.. The pathogenicity tests of the four species showed that C. cladosporioides was the only dominant and effective species. The percentage of parasitism reached 15.5 after four weeks of application.

Key words: Biological control - Black scale insect - Bioagent - Natural enemies - Ectoparasitoid - Endoparasitoid - Entomogenous fungi - Ecology - Biology - Isolation - Phathogenicity test - Chrysomphalus ficus - Aphytis holoxanthus - Aspidiotiphagus citrinus - A. lounsburyi - Habrolepis pascuorum - Cladosporium cladosporioides.

#### ACKNOWLEDGEMENT

The author express his profound gratitude and deep appreciation to Professor Dr. J. J. J. J. J. Professor of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University for his supervision, keen interest in the subject guidance, helpful criticism, encouragement and suggesting the problem.

Special thanks are also due to Professor Dr. J. M.J.

Hekal, Professor of Economic Entomology at the same Department, for his supervision, valuable guidance, kind encouragement, scientific advice and assistance throughout the work.

Also thanks are due to Dr. M. J. Rezk, Assistant Professor of Economic Entomology at the same Department, for her continuous help, guidance and useful assistance.

Sincere thanks are extended to Dr. M. J. Jhmed, Assistant Professor, Department of plant pathology, Faculty of Agriculture, Ain Shams University for his kind help in the identification of the fungi.

My supreme gratitude and appreciation to *My Jamily*, to whom I indebted, for their valuable continuous supports.

## CONTENTS

|                                                                            | Page |
|----------------------------------------------------------------------------|------|
| LIST OF TABLES                                                             | i    |
| LIST OF FIGURES                                                            | v    |
| INTRODUCTION                                                               | 1    |
| NOMENCLATURE OF THE BLACK SCALE INSECT AND IDENTIFICATION                  |      |
| OF ITS ECTOPARASITOID                                                      | 3    |
| A. The black scale insect                                                  | 3    |
| B. The ectoparasitoid                                                      | 4    |
| REVIEW OF LITERATURE                                                       | 7    |
| MATERIAL, METHOD AND TECHNIQUES                                            | 31   |
| RESULTS AND DISCUSSION                                                     | 43   |
| I- ECOLOGICAL STUDIES                                                      | 43   |
| A. Seasonal fluctuation in the population density                          |      |
| of the black scale insect, Chrysomphalus ficus                             |      |
| on navel orange trees                                                      | 43   |
| B. Seasonal variations of different stages of                              |      |
| alive population of Chrysomphalus ficus on                                 |      |
| navel trees                                                                | 47   |
| C. Number and Duration of Generations of                                   |      |
| Chrysomphalus ficus on navel orange trees                                  | 49   |
| D. Seasonal activities of the natural enemies of                           |      |
| the black scale, Chrysomphalus ficus on navel                              |      |
| orange trees                                                               | 52   |
| E. Seasonal activity of the ectoparasitoid,                                |      |
| Aphytis holoxanthus DeBach on the black scale, Chrysomphalus ficus Ashmead | 58   |
| F. Seasonal activities of three endoparasitoids                            |      |
| species on the black scale, Chrysomphlus                                   |      |
| ficus                                                                      | 64   |
| G. Seasonal activity of the entomogenous fungus,                           |      |
| Cladosporium cladosorioides on the black scale,                            |      |
| Chrysomphalus ficus                                                        | 70   |

| н.  | Combined effects of three bloagents and two        |     |
|-----|----------------------------------------------------|-----|
|     | main climatic factors on the population density    |     |
|     | of C. ficus on navel orange trees                  | 74  |
|     | a) Effects of the five selected factors on the     |     |
|     | total alive population of C. ficus on navel orange | 76  |
|     | b) Effects of four selected factors on the         |     |
|     | number of alive nymphs of C. ficus on navel        |     |
|     | orange                                             | 79  |
|     | c) Effects of the five selected factors on the     |     |
|     | number of alive females of C. ficus on navel       |     |
|     | orange                                             | 82  |
|     | d) Effects of the four selected factors on the     |     |
|     | number of alive males of <i>C. ficus</i> on navel  | 85  |
| T T | MORPHOLOGY AND BIOLOGY OF THE APHELINID            | 63  |
| II- | PARASITOID, Aphytis holoxanthus                    | 92  |
| A.  | THE EGG STAGE                                      | 92  |
|     | THE LARVAL STAGE                                   | 96  |
|     | 1. First instar                                    | 96  |
|     | 2. Second instar                                   | 99  |
|     | 3. Third instar                                    | 99  |
| c.  | THE PUPAL STAGE                                    | 101 |
|     | 1. Prepupa                                         | 101 |
|     | 2. Pupa                                            | 104 |
| D.  | THE ADULT STAGE                                    | 112 |
|     | 1. Emergence of the adult                          | 112 |
|     | 2. Mating behaviour                                | 113 |
|     | 3. Number of parasitoids on one single host        | 116 |
|     | 4. Sex ratio and parthenogenesis                   | 117 |
| E.  | DURATION OF THE ADULT STAGE                        | 119 |
|     | 1. Preoviposition period                           | 119 |
|     | 2. Oviposition period                              | 121 |

| 3. Post oviposition period                      | 122 |
|-------------------------------------------------|-----|
| 4. Fecundity                                    | 122 |
| 5. Adults longevity                             | 123 |
| 6. Number of hosts parasitized by parasitoid    |     |
| female                                          | 124 |
| III- ENTOMOGENOUS FUNGUS AND PATHOGENICITY TEST | 126 |
| A. IDENTIFICATION                               | 126 |
| B. PATHOGENICITY TEST                           | 126 |
| SUMMARY                                         | 130 |
| REFERENCES                                      | 141 |
| ARABIC SUMMARY                                  |     |

## LIST OF TABLES

| Table 1: Means of the half monthly counts of alive stages of Chrysomphalus ficus per square inch of navel orange leaf (estimated from 150 leaves) from                                                                                                                                                             |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| citrus orchard at El-Kanater El-Khiria, Qualubia  Governorate with corresponding means temperature  and R.H.% during 1989-1990                                                                                                                                                                                     |   |
| Table 2: Half-monthly counts of different developmental stages of <i>C. ficus</i> with their numbers and percentages of natural death as will as death caused by different bioagents, throughout the four annual generations, the means on one square inch of orange leaf at El-Kanater El-Khiria during 1989-1990 |   |
| Table 3: The half-monthly counts of the ectoparasitoid,  Aphytis holoxanthus on different stages of C.  ficus on navel orange trees at El-Kanater El- Khiria, Qualubia Governorate with their mean percentages of parasitism during the four annual generations of the host during 1989-1990 59                    | , |
| Table 4: The half-monthly counts of three different species of endoparasitoids on different stages of Chrysomphalus ficus on navel orange trees at El-Kanater El-Khiria, Qualubia Governorate, with their mean percentages of parasitism during the four annual generations of the host during 1989-1990           | 5 |
| Table 5: The half-monthly counts of the entomogenous fun- gus, Cladosporium cladosporioides on different stages of C. ficus on navel orange trees at El- Kanater El-Khiria, Qualubia Governorate, with their mean percentages of parasitism during the four annual generations of the host during 1989- 1990       | 1 |

| Table | 6: Half-monthly counts of total number of alive     |    |
|-------|-----------------------------------------------------|----|
|       | population of C. ficus on one square inch of na-    |    |
|       | vel orange leaf at El-Kanater El-Khiria, Qualu-     |    |
|       | bia Governorate throughout four annual genera-      |    |
|       | tions during 1989-1990 with the corresponding       |    |
|       | five independent factors (3 biotic + 2 physical     |    |
|       | factors)                                            | 77 |
|       |                                                     |    |
| Table | 7: Results of statistical analysis of simple corre- |    |
|       | lation and partial regression to investigate the    |    |
|       | combined effects of three bioagents and two main    |    |
|       | climatic factors on the corresponding half-         |    |
|       | monthly counts of total alive population of C.      |    |
|       | ficus on navel orange leaves throughout four an-    |    |
|       | nual generations during 1989-90 at El-Kanater       |    |
|       | El-Khiria, Qualubia - Governorate                   | 78 |
|       |                                                     |    |
| Table | 8: Half-monthly counts of number of alive nymphs of |    |
|       | C. ficus on one square inch of navel orange leaf    |    |
|       | at El-Kanater El-Khiria, Qualubia Governorate       |    |
|       | throughout four annual generations during 1989-     |    |
|       | 90 with corresponding four independent factors      |    |
|       | (2 biotic + 2 physical factors)                     | 80 |
|       |                                                     |    |
| Table | 9: Results of statistical analysis of simple corre- |    |
|       | lation and partial regression to investigate the    |    |
|       | combined effects of two bioagents and main cli-     |    |
|       | matic factors on the corresponding counts of the    |    |
|       | alive nymphs of C. ficus on navel orange leaves     |    |
|       | throughout four annual generations during 1989-     |    |
|       | 90 at El-Kanater El-Khiria, Qualubia Governorate    | 81 |
| Table | 10: Half-monthly counts of alive females of C.      |    |
| Table | ficus on one square inch of navel orange leaf at    |    |
|       | El-Kanater El-Khiria, Qualubia Governorate          |    |
|       | · -                                                 |    |
|       | throughout four annual generations during 1989-     |    |
|       | 90 with the corresponding five independent fac-     |    |
|       | tors (3 biotic + 2 physical factors)                | 83 |
| Table | 11: Results of statistical analysis of simple cor-  |    |
|       | relation and partial regression to investigate      |    |
|       |                                                     |    |

|         | the combined effects of three bloagents and two     |     |
|---------|-----------------------------------------------------|-----|
|         | main climatic factors on the corresponding half-    |     |
|         | monthly counts of alive females of C. ficus on      |     |
|         | navel orange leaves throughout four annual gen-     |     |
|         | erations during 1989-90 at El-Kanater El-Khiria,    |     |
|         | Qualubia Governorate                                | 84  |
|         |                                                     |     |
| Table 1 | 2: Half-monthly counts of number of alive males of  |     |
|         | C. ficus on one square inch of navel orange leaf    |     |
| •       | at El-Kanater El-Khiria, Qualubia Governorate       |     |
|         | throughout four annual generations during 1989-     |     |
|         | 90 with the corresponding four independent fac-     |     |
|         | tors (2 biotic + 2 physical factors)                | 87  |
| Table   | 13: Results of statistical analysis of simple cor-  |     |
|         | relation and partial regression to investigate      |     |
|         | the combined effects of two bloagents and two       |     |
|         | main climatic factors on the corresponding          |     |
|         | counts of the alive males of C. ficus on navel      |     |
|         | orange leaves throughout four annual generations    |     |
|         | during 1989-90 at El-Kanater El-Khiria, Qualubia    |     |
|         | Governorate                                         | 88  |
|         |                                                     |     |
| Table 1 | 14: The mean durations of the immature stages of A. |     |
|         | holoxanthus reared on C. ficus (each mean           |     |
|         | calculated from 20 replicates)                      | 95  |
| Table   | 15: The mean numbers of developing parasitoids of   |     |
| Table   | A. holoxanthus on a single host of C. ficus         |     |
|         | (each mean calculated from 20 replicates)           | 110 |
|         | (each mean calculated from 20 replicates)           | 118 |
| Table : | 16: Sex ratio and parthenogenesis in progeny of A.  |     |
|         | holoxanthus reard on C. ficus, under field and      |     |
|         | laboratory conditions                               | 118 |
|         |                                                     |     |
| Table   | 17: The effects of different types of foods on the  |     |
|         | oviposition periods, fecundity, longevity of        |     |
|         | both sexes and number of hosts parasitized by       |     |
|         | Aphytis holoxanthus reared on Chrysomphalus         |     |
|         | ficus under laboratory conditions                   | 120 |

## LIST OF FIGURES

|          |                                                                                                                                                                                                                                                         | Page |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 1 | l: Rearing box of Aphytis holoxanthus                                                                                                                                                                                                                   | 34   |
| Figure   | 2: Sour orange seedling with plastic cages for                                                                                                                                                                                                          |      |
|          | biological sutdies of A. holoxanthus                                                                                                                                                                                                                    | 36   |
| Figure 3 | 3: The emergance box of the parasitoids                                                                                                                                                                                                                 | 39   |
| Figure 4 | 4: Box of pathogenicity test of pathogenic fungus.                                                                                                                                                                                                      | 41   |
| Figure   | 5: Seasonal fluctuation in population density of<br>C. ficus represented by total numbers of alive<br>population on navel orange trees with their<br>corresponding mean temperature and relative<br>humidity at El-kanater El-Khiria during 1989-<br>90 | 46   |
| Figure   | 6: Seasonal variation in <i>C. ficus</i> of different alive stages on navel orange trees at El-kanater El-Khiria during 1989-90                                                                                                                         |      |
| Figure   | 7: Half-monthly percentage of <i>C. ficus</i> nymph on navel orange trees at El-kanater El-Khiria during 1989-90 (A) nymphs, (B) females and (C) males                                                                                                  | 48   |
| Figure   | 8: Percentages of natural and bioagents death on different stages of <i>C. ficus</i> throughout four annual generations at El-kanater El-Khiria during 1989-90. (A) 1st generation (B) 2nd generation (C) 3rd generation (D) 4th generation             | 55   |
| Figure   | 9: Percentage of A. holoxanthus on different stages of C. ficus at El-kanater El-Khiria                                                                                                                                                                 |      |
|          | during 1989-90                                                                                                                                                                                                                                          | 60   |

| Figure     | 10: Percentages of endoparasitoids on different      |     |
|------------|------------------------------------------------------|-----|
|            | stages of <i>C. ficus</i> at El-kanater El-Khiria    |     |
|            | during 1989-90                                       | 66  |
| Figure     | 11: Percentages of entomogenous fungus Cladospo-     |     |
| _          | rium cladosporioids on different stages of C.        |     |
|            | ficus at El-kanater El-Khiria during 1989-           |     |
|            | 90                                                   | 72  |
| Figure     | 12: Newly deposited egg of A. holoxanthus (X 400).   | 93  |
| Figure     | 13: Fully formed embryo of A. holoxanthus (X 400).   | 93  |
| Figure     | 14: Mandibles of the three larval instars of A.      |     |
|            | holoxanthus (A) 1st instar; (B) 2nd instar; (C)      |     |
|            | 3 <sup>rd</sup> instar (X 400)                       | 97  |
| Figure     | 15: Larvae of A. holoxanthus (A) Newly hatched;      |     |
| -          | (B) older hatched (X 400)                            | 98  |
| <b>=</b> : | 16. mb. first instantants of a halamathus (V         |     |
| Figure     | 16: The first instar larva of A. holoxanthus (X 100) | 98  |
|            | 100)                                                 | 90  |
| Figure     | 17: The second instar larva of A. holoxanthus (X     |     |
|            | 100)                                                 | 100 |
| Figure     | 18: The third instar larva of A. holoxanthus (X      |     |
| •          | 100)                                                 | 100 |
|            |                                                      |     |
| Figure     | 19: Cephalic skeleton of 3rd instar larva of A.      | 100 |
|            | holoxanthus (X 100)                                  | 102 |
| Figure     | 20: The prepupa of A. holoxanthus (X                 |     |
|            | 100)                                                 | 103 |
| Figure     | 21: The meconia of A. holoxanthus (X 400)            | 103 |
| rigule     | 21. The meconita of A. horoxanehus (A 400)           | 100 |
| Figure     | 22: Anterior portion of prepupa of A. holoxanthus    |     |
|            | (X 200)                                              | 104 |
| Figure     | 23: Late prepupa of A. holoxanthus (X 100)           | 104 |
| Figure     | 24: The newly formed pupa of A. holoxanthus (X 25)   | 107 |