STUDIES ON THE MECHANISM OF INDUCED RESISTANCE TO FUSARIUM WILT OF WATERMELON

By

EMAD EL-DEIN ALI MOSTAFA GADO

632.4 F.A. B.Sc. Agriculture (Plant Pathology) Ain Shams University, 1991

56257

A thesis submitted in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

In

Agriculture
(Plant Pathology)
Department of Plant Pathology
Faculty of Agriculture
Ain Shams University

1997

APPROVAL SHEET

STUDIES ON THE MECHANISM OF INDUCED RESISTANCE TO FUSARIUM WILT OF WATERMELON

By

EMAD EL-DEIN ALI MOSTAFA GADO

B.Sc. Agriculture (Plant Pathology) Ain Shams University, 1991

Prof. Dr. Mahmoud Maher Ragab.

Prof. Dr. Mahmoud Maher Ragab.

Prof. of Plant Pathology, Fac. of Agric., Cairo University

Prof. Dr. Madih Mohamed Aly.

Prof. of Plant Pathology, Fac. of Agric., Ain Shams University

Prof. Dr. Mostafa Helmy Mostafa.

Prof. of Plant Pathology, Fac. of Agric., Ain Shams University

Date of examination 2 /9 / 1997

STUDIES ON THE MECHANISM OF INDUCED RESISTANCE TO FUSARIUM WILT OF WATERMELON

By

EMAD EL-DEIN ALI MOSTAFA GADO

B.Sc. Agriculture (Plant Pathology)

Under the Supervision of:

Prof. Dr. M.H. Mostafa

Professor of Plant Pathology (Ain Shams Univ.)

Prof. Dr. Dorria I. Harfoush

Professor of Plant Pathology (Ain Shams Univ.)

Dr. A.A. Mosa

Assistant Prof. of Plant Pathology (Ain Shams Univ.)

ACKNOWLEDGMENT

All praises are due to God, who blessed me with kind professors and colleagues, and gave me the support to produce this thesis.

I wish to express my deepest gratitude to Prof. Dr. M.H. Mostafa, Professor of Plant Pathology Faculty of Agricultur, Ain Shams University for his supervision, help, valuable suggestions and continuous encouragement during this study. Thanks are also due to Prof. Dr. Dorria I. Harfoush, Professor of Plant Pathology, Faculty of Agriculture, Ain Shams University for her supervision, encouragement and sincere support. Thanks are also and my sincere appreciations to Dr. A.A. Mosa, Assistant Prof. of Plant Pathology, Faculty of Agriculture, Ain Shams University for supervising this work, kind attention, and make through the course of the implementation of this thesis. Thank also extended to all staff members of Plant Pathology Department, Faculty of Agriculture, Ain Shams University. Specially, Prof. Dr. M.M. Aly and Dr. S.H. El-Deeb.

My deepest thanks and gratitude are also due to **Prof. Dr. M.A. Rashed** Prof. of Genetics, **Dr. F.M. El-Domyaty**Associate Prof. of Genetics, Department of Genetic, Faculty of Agriculture, Ain Shams University for their valuable help during electrophoretical studies.

Thanks are also due to Prof. Dr. S.A. Habib, Prof. of Botany, Faculty of Agriculture, Ain Shams University for kind attention and sincere support.

Thanks are also due to **Dr. Larisa**, **Ananieva**, Ph.D. Biology. Expert of Electron microscopy Ain Shams University Specialized Hospital and all members of the EM lab.

Emad El-Dein Ali Mostafa Gado: Studies on the mechanism of induced resistance to fusarium wilt of watermelon

Unpublished Master of Science, University of Ain Shams, Faculty of Agriculture, Department of Plant Pathology, (1997)

ABSTRACT

This investigation was aimed to select some biotic and abiotic agents for inducing resistance in watermelon plants against wilt fungus Fusarium oxysporum f.sp niveum. Among tested agents, Pseudomonas fluorescens, salicylic acid (SA), hydrogen peroxide (H_2O_2) and Co^{++} as a cobalt sulphate were effective in controlling wilt incidence as seed treatments. Abiotic agents increased seedling growth and formation of lateral roots on the main axis of root. These seedlings were highly tolerant to the pathogen when they set over the fungal growth.

Anatomical features of plants from treated seeds by these abiotic agents were greatly affected. Cortex area, number of xylum vessels and xylem diameter were increased due to the treatment by SA, H_2O_2 , Co^{++} . Intrabundles cambium (intervascicular) was regenerated produced from 3 to 4 layers. Transmission electron microscopy showed that these abiotic factors, strongly activated cell metabolism and in the presence of fungal cells, the defence reactions were stimulated caused a remarkable effect on pathogen cell. Peroxidase activity was found to be increased in plant tissues as the result of treatment by these abiotic agents. In immunized plants such activity was highly increased, except in case of *P. fluorescens* treatment. Isozyme pattern of peroxidase gave the same picture. SDS-

PAGE of soluble protein showed a great modification as the results of treatment. Cobalt ions superior all other treatments followed by SA then H_2O_2 and P. fluorescens in this respect.

Key words: Acquired resistance, Anatomical studies, Biotic inducers, Abiotic inducers, H₂O₂,Co⁺⁺, Salicylic acid, Pseudomonas fluorescens, Ultrastructure, Protein Pattern, Peroxidase isozyme, Regeneration, Fusarium wilt of watermelon, Fusarium oxysporum f. sp. niveum, Citrulus lanatus.

CONTENTS

	Page
ABSTRACT	I
ACKNOWLEDGEMENT	III
LIST OF TABLES	IV
LIST OF FIGURES	V
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
2.1. Historical approach	3
2.2. Inducing resistance by biotic agents	4
2.3. Inducing resistance by aboiotic agents	11
2.4. Anatomical features of immunized plants	16
2.5. Physiological aspects of defence reaction	20
III. MATERIALS AND METHODS	26
3.1. Isolation of watermelon fusarium wilt pathogen	26
3.2. Identification of Fusarium isolates	26
3.3. Pathogenicity tests	26
3.3.1. Preparation of inoculum	26
3.3.2. Greenhouse test	27
3.4. Disease assessment	27
3.5. Host range	28
3.6. Tests for induction of resistance in watermelon against	
fusarium wilt	28
3.6.1. Biotic inducers	28
3.6.2. Abiotic inducers	29
3.6.3. Seed treatment	29
3.7. Effect of different agents on morphological characters of	
plants	30
3.8. Effect of different agents on seedling characters	30
3.9. Effect of different agents on the tolerance of watermelon	
root to FON	30

