

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERIN IRRIGATION & HYDRAULICS DEPARTMENT

A Water Quality Numerical Model for Lake Maryout

A Thesis Submitted in Partial Fulfillment for the Requirements of the PhD Degree of Science in Civil Engineering (Irrigation and Hydraulics)

By

Amgad Roshdy Abdo Silim

M.Sc. Civil Engineering (Irrigation and Hydraulics) Cairo University (2008)

Supervised by **Prof.Dr. Nahla M. AboulAtta**

Professor of Irrigation Design Head of Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

Dr. Mohamed Abdel-Hamid Gad

Associate Professor Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

Cairo, Egypt, 2015

A Water Quality Numerical Model for Lake Maryout

By

Amgad Roshdy Abdo Silim

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of the Doctor of Philosophy in Civil Engineering

Examiners Committee

Prof. Dr. Kassem Salah Abd El Wahab El Alfy

Professor of Hydraulics Vice Dean of Post Graduate and Research Affairs Faculty of Engineering Mansoura University

Prof. Dr. Abdel Kawi A. Mukhtar Khalifa

Professor of Hydraulics Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

Prof.Dr. Nahla M. AbdelHamid AboulAtta

Professor of Irrigation Design Head of Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

Dr. Mohamed Abdel-Hamid Gad

Associate Professor Irrigation and Hydraulics Department Faculty of Engineering - Ain Shams University

AUTHER CURRICULIM VITA

PERSONAL DATA

Name : Amgad Roshdy Abdo Silim

Present Position: Assistant Researcher,

Drainage Research Institute, DRI, National Water Research Center,

NWRC.

EDUCATION

- Diploma in Water Resources Management "Irrigation & hydraulics" Faculty of Engineering Cairo University July 2003.
- Master Degree of Civil Engineering -"Irrigation and Hydraulics" Faculty of Engineering - Cairo University - November 2008.

STATEMENT

This thesis is submitted to the Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University in Partial Fulfillment of the requirements for the degree of Doctor of Philosophy in Civil Engineering.

The work included in this thesis was carried out by the author in the Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University from 2010 to 2015.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date:	
Name: Amgad Roushdy Abdo Silim	
Signature:	

ACKNOLEDGMENT

I would like to deeply thank **Prof. Dr. Nahla M. AbdelHamid AboulAtta**, and **Dr. Mohamed Abdel-Hamid Gad** for all their sincere efforts, supervision, and kind encouragement of my dissertation. I would like also to thank the examiners of my dissertation **Prof. Dr. Abdel Kawi A. Mukhtar Khalifa** and **Prof. Dr. Kassem Salah Abd El Wahab El Alfy** for their valuable directions.

Finally, I would like to thank my family and my friends for all the support during the time of my research and dissertation.

TABLE OF CONTENTS

CHAPTER I	Page
1 INTRODUCTION	1
1.1 Background	1
1.2 Pollution and Current Status of Lake Maryout	4
1.3 Problem Definition	6
1.4 Research Objective	6
1.5 Methodology	7
1.6 Thesis Structure and Organization	8
СНАРТЕК П	
2 REVIEW of LITERATURE	11
2.1 Introduction	11
2.2 Water Quality and Eutrophication	11
2.2.1 Eutrophication Overview	12
2.2.2 Algae	15
2.2.3 Nutrients	18
2.2.3.1 Nitrogen Cycle	21
2.2.3.2 Phosphorus Cycle	23
2.2.4 Limiting Nutrients	25
2.2.5 Dissolved Oxygen	28
2.2.6 Governing Equations for Hydrodynamic Processes	30
2.2.6.1 Advection and Dispersion	31
2.2.6.2 Mass Balance Equation	33
2.2.7 Governing Equations for Water Quality Processes	34
2.2.7.1 State Variables in Water Quality Models	37
2.2.8 Algal Processes	38
2.2.8.1 Algal Biomass and Chlorophyll	39
2.2.8.2 Equations for Algal Processes	42
2.3 World Wide Research on Eutrophication in Lakes	46

2.3.1 Ecological Modeling Approaches	48
2.4 Latest Researches on the Egyptian Lakes	52
2.4.1 Lake Maryout as a Case of Study	56
2.4.1.1 Historical Background of Lake Maryout	56
2.4.1.2 Latest Projects Researches on Lake Maryout	59
2.4.1.3 Latest Researches on Lake Maryout	64
2.5 Additional Eutrophication Control Solutions for Future	74
Studies	7.5
2.5.1 Strategies for Reducing Urban and Suburban	75
Nutrients Sources	75
2.5.1.1 Municipal and Industrial Treatment Plants	75 76
2.5.1.2 Storm Sewers and Combined Sewer Overflows	76
2.5.1.3 Onsite Wastewater Treatment Systems/Septic Systems	77
2.5.1.4 Lawn and Landscape Care	78
2.5.1.5 Animal Wastes Control	78
2.5.2 Strategies for Reducing Agricultural Sources	79
2.5.2.1 Tools for Agricultural Producers	79
2.5.3 Reducing Atmospheric Loads	82
2.5.4 Using Wetlands and Buffers as Nutrient Interceptors	83
CHAPTER Ш	
3 DATA COLLECTION, PROCESSING, and ANALYSIS	91
ANALISIS	
3.1 Introduction	91
3.2 Data Sources	91
3.2.1 Hydrological Data Source	92
3.2.2 Meteorological Data Source	92
3.2.3 Water quality Data Source	93
3.2.4 Biota Data Source	94
3.3 The Study Area	95
3.3.1 Description of Lake Maryout Hydraulics	96
3.4 Lake Maryout Dataset	98
3.4.1 Satellite Images	98

3.4.2 Bathymetry	99
3.4.3 Metrological Data	99
3.4.4 Hydrological Data	100
3.4.4.1 Lake Inflows/Outflows	101
3.4.5 Water Quality Data	102
3.4.6 Phytoplankton and Chlorophyll Data Set in	106
Lake Maryout	
3.5 Lake Maryout Data Analysis	108
3.5.1 Water Quality Data Analysis	108
3.5.1.1 Dissolved Oxygen (DO)	110
3.5.1.2 Biological Oxygen Demand (BOD)	113
3.5.1.3 Nitrogen	114
3.5.1.4 Phosphorus	116
3.5.1.5 Turbidity (Secchi disc)	117
3.5.1.6 Chlorophyll Data Analysis	117
3.5.1.7 Phytoplankton in Lake Maryout	119
3.6 Closing Remarks	120
CHAPTER IV	
CHAPTER IV 4 ASSESSMENT OF EUTROPHICATION IN LAKE	131
	131
4 ASSESSMENT OF EUTROPHICATION IN LAKE	131 131
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT	
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT 4.1 Introduction	131
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT 4.1 Introduction 4.2 Background	131 131
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT 4.1 Introduction 4.2 Background 4.2.1 Agriculture Pollution	131 131 132
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT 4.1 Introduction 4.2 Background 4.2.1 Agriculture Pollution 4.2.2 Domestic Pollution	131 131 132 132
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT 4.1 Introduction 4.2 Background 4.2.1 Agriculture Pollution 4.2.2 Domestic Pollution 4.2.3 Industrial Pollution	131 131 132 132 133
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT 4.1 Introduction 4.2 Background 4.2.1 Agriculture Pollution 4.2.2 Domestic Pollution 4.2.3 Industrial Pollution 4.3 Model Development	131 131 132 132 133 133
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT 4.1 Introduction 4.2 Background 4.2.1 Agriculture Pollution 4.2.2 Domestic Pollution 4.2.3 Industrial Pollution 4.3 Model Development 4.4 Boundary Condition	131 131 132 132 133 133
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT 4.1 Introduction 4.2 Background 4.2.1 Agriculture Pollution 4.2.2 Domestic Pollution 4.2.3 Industrial Pollution 4.3 Model Development 4.4 Boundary Condition 4.4.1 Water Quality	131 131 132 132 133 133 136
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT 4.1 Introduction 4.2 Background 4.2.1 Agriculture Pollution 4.2.2 Domestic Pollution 4.2.3 Industrial Pollution 4.3 Model Development 4.4 Boundary Condition 4.4.1 Water Quality 4.4.2 Lake Maryout Inflows/Outflow	131 131 132 133 133 136 136 139
4 ASSESSMENT OF EUTROPHICATION IN LAKE MARYOUT IN EGYPT 4.1 Introduction 4.2 Background 4.2.1 Agriculture Pollution 4.2.2 Domestic Pollution 4.2.3 Industrial Pollution 4.3 Model Development 4.4 Boundary Condition 4.4.1 Water Quality 4.4.2 Lake Maryout Inflows/Outflow 4.5 Model Calibration	131 132 132 133 133 136 136 139

Maryout Waters	
4.7.2 Assessment of Heavy Metals in Lake Maryout Fish	147
4.8 Closing Remarks	151
CHAPTER V	
5 A COUPLED HYDRODYNAMIC AND	152
ECOLOGICAL MODEL FOR SIMULATING	
EUTROPHICATION IN LAKE MARYOUT	
IN EGYPT	
5.1 Introduction	152
5.2 Background	152
5.2.1 Empirical Models	152
5.2.2 Theoretical Models	153
5.2.3 Ecological Common Modeling Approaches in Lakes	153
5.3 Model Description	155
5.3.1 Hydrodynamics	155
5.3.2 Eutrophication and Water Quality	158
5.4 Lake Maryout Model Set up	163
5.4.1 Hydrodynamic Model Development for Lake	163
Maryout	
5.4.1.1 Time Step and Model Calculation Time	163
5.4.1.2 Computational Finite Difference Grid	164
5.4.1.3 Hydrodynamic Initial Conditions	164
5.4.1.4 Hydrodynamic Boundary Conditions	164
5.4.1.5 Wind Forcing and Precipitation – Evaporation	165
5.4.1.6 Hydrodynamic Model Calibration	165
5.4.2 Ecological Model Development for Lake Maryout	167
5.4.2.1 Water Quality Boundary Conditions	167
5.4.2.2 Water quality initial condition	167
5.4.2.3 Temperature in Lake Maryout	167
5.4.2.4 Advection Dispersion Transport Parameters	168
5.4.2.5 Ecological Model Calibration	168
5.4.2.6 Justification of the Results	169
5.5 Closing Remarks	172

CHAPTER VI

6 MODEL APPLICATION	189
6.1 Introduction	189
6.2 Eutrophication Reduction Alternatives for Lake	189
Maryout	
6.2.1 Adding Secondary Treatment Unites Inside, WWTP & EWTP	190
6.2.1.1 Secondary Treatment Unites Assessment	193
6.2.2 Improving Lake Maryout Hydrodynamic Behavior	195
6.2.2.1 Water Quality and Eutrophication response after	197
Hydrodynamic Improvement	
6.2.2.2 Using Coupled Hydrodynamic/Ecological	199
Calibrated Model to Study the Hydrodynamic	
Improvement Effect on Lake Maryout	
6.2.2.3 Lake Maryout Ecological Model Results	206
6.3 Recommended Alternatives for Further Search	208
6.3.1 Strict Laws on the Farming Activities	209
6.3.1.1 Soil Fertility and Plant Nutrients Practicing	209
6.3.1.2 Adopting Means for Animal Carcasses Disposal	212
6.3.1.3 On-site Septic Tanks for Sewage of humans	212
and Animals Disposals	21.4
6.3.2 Reduce Loads from Original Sources in the Upper Catchment	214
6.3.3 Establishing a Cleaning and Dredging Program for	218
Lake Maryout for Future Studies	
6.3.3.1 Sediment Analysis for Lake Maryout	218
6.3.3.2 Directions for Lake Maryout Dredging	219
Feasibility Studies	
CHAPTER VII	
7 CONCLUSION AND RECOMMENDATIONS	231
7.1 Conclusions	231