THE VALUE OF PROSTAGLANDINS

IH

IMPANCY AND CHILDHOOD

618.92396 S.N

ESSAY

Submitted for Partial Fulfilment of

236

Master Degree of

Pediatrics.

18529

BY

Saad Mahmoud El - Sayed Hassouna

MB. B. CH.

Supervised by

Dr. Mohamed Fouad Badrawi
Assistant Professor of Pediatrics
Faculty of Medicine
Ain Shams University

1984

ACKNOWLEDGEMENT

I would like to express my deepest, sincere gratitude and appreciation to Dr. Fouad Badrawi, Assist. Prof. of Pediatrics, Ain Shams University, for his generous help and continuous guidance in supervising the essay. In undertaking this task he gave me incessant encouragement endowed with fatherly attitude and moral support. I am also indebted to him for allowing me the apportunity to review such a recent subject.

I am deeply touched by the continuous encouragement and infinite support of my family.

In short to all of the above mentioned, I wish to quote:

" More is thy due than more "
than all can pay.

CONTENTS

				Page
In	troductio	n	• • • • • • • • • • • • • • • • • • • •	I
			rk	III
A b	breviatio	ns	•••••	IV
-	Chapter	1	Nomenclture and structure of prostaglan-	
			dins	1
J	Chapter	2	Biosynthesis, Mechanism of action and	
			Catabolism of Prostaglandins	11
_	Chapter	3	Prostaglandins, inflammation, and	
			immunity	42
	Chapter	4	Prostaglandins and renal functions	54
	Chapter	5	Prostaglandins and the Gastrointestinal	
			tract	67
	Chapter	6 :	Prostaglandins, endocrine and metabolic	
			effects	73
	Chapter	7	Prostaglanding and the heart	79
	Chapter	8 :	Prostaglandins and effects on platelets	
	-		and blood vessels	85
	Chapter	9 :	Prostaglandins, and the lung	100
	Chapter	10:	Prostaglanding, and effects on the eye	
			and the nervous system	107
	Chapter	11:	Current and Future therapeutic applica-	
			tions of prostaglandins and their in-	
			hibitors	110
			***************************************	121
le	ferences	•••	***************************************	127
ır	abic Summ	41		

INTRODUCTION

The prostaglandins are a unique group of cyclic fatty acids with vast and potent biologic effects involving almost every organ system in a variety of species including the human. Biologic activity ascribable to these compounds was first discovered in the early 1930s independently by Kurzrok and Lieb, Goldblatt, and Von Euler, who observed that extracts of seminal vesicles or human semen caused contraction of the isolated uterus and lowering of blood pressure. (Lee, 1981).

The first prostaglandins identified were PGE₂, PGP_{2∞} PGA₂, PGB₂, PGC₂ and PGD₂. These prostaglandins are referred to as the classic prostaglandins. In the course of studies on blood platelet prostaglandin synthesis, a powerful vasoconstrictor substance with platelet aggregation properties was discovered in 1975 and named thromboxane. Subsequent research has shown that prostaglandins are synthesized in virtually all cells of the mammalian organism and participate in many physiological functions.

Prostaglandins play an important role in platelet aggregation, renal incretory and excretory function, parturition, inflammation, and fever. This wide spectrum

of activites is one of the reasons that prostaglandins are of such general interest. (Frölich and Margolius, 1981).

The discovery of an unstable substance which was named PGK in 1976 and which is later named prostacyclin has been fundamently altered the understanding of thrombosis and haemostasis and opened up new therapeutic avenues, for prostacyclin itself, for stable analogues and for agents which block or divert the biosynthetic pathways of prostaglandins and thromboxanes. (O'Grady, 1980).

The latest addition to the family tree of prostaglandins, the leukotrienes, were described in 1979. These compounds are involved in the inflammatory process. (Frölich and Margolius, 1981).

- ITI -

Aim of the work

In this piece of work a modest trial is carried out to give a review of the current concepts of prostaglandins, their metabolism, their implication in the physiological and pathological body responses in the various systems of the body, and their role in therapy in infancy and childhood by themselves, their synthetic analogues, or through their inhibition or enhancement.

ABBREVIATIONS

AA = Arachidonic acid

ADH = Antidiuretic hormone = VP.

ADP = Adenosine diphosphate.

ATP = Adenosine tri-phosphate.

C = Carbon

CAMP = Cyclic adenosine monophosphate.

CGMP = Cyclic Guanosine monephosphate

DTS = The dense Tubular system

GFR = Glomerular filteration rate.

HETE = 12-hydroxy arachidonic acid

HPETE = 12-hydroxy-peroxy-arachidonic acid

INF = interferon

KKS = Kallekrin-Kinin system

LT = Leukotriene

NSAIDS - Non steroidal anti-inflammatory drugs.

P_R = Picogram

PG = Prostaglandin

PGI₂ = Prostacyclin = Prostaglandin I₂

PGS = Prostaglandins

PG2S = Prostaglandins with 2 double bonds series

R-A = Renin-Angiotensin system

RAAS = Remin-angistensin - aldosterone system

(Cont.)

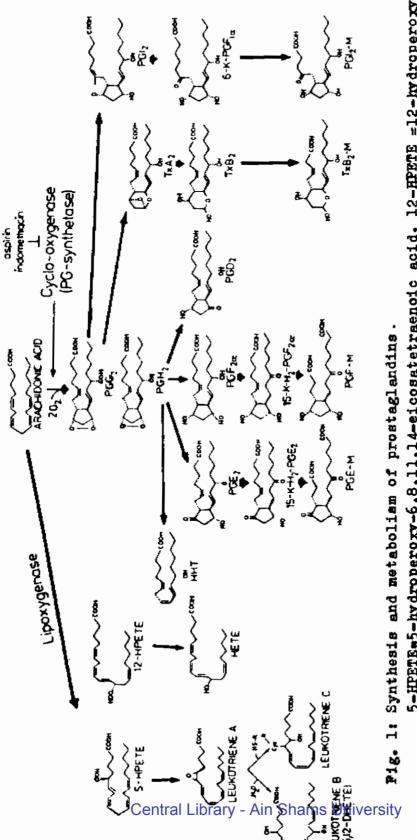
SCCS = The surface connected canalicular system

SRS-A - Slow reacting substance of anaphylaxis

TSH = Thyroid stimulating hormone.

TRH - Thyrotrophic releasing hormone

TX = Thromboxane


VP = Vesopressin = ADH

BIOCHEMICAL ASPECTS OF PROSTAGLANDINS

BIOCHEMICAL ASPECTS OF PROSTAGLANDINS CHAPTER 1 HOMENCLATURE AND STRUCTURE

The term prostaglandin in the chemically correct sense refers only to compounds derived from prostanoic acid, a chemical not found in nature. Biologists, however generally include in the definition all the compounds shown in Figure (1). The classical prostaglandins PGA₂, PGB₂, PGD₂, PGE₂ and PGF₂, are all derived from prostanoic acid and differ by virtue of functional groups on the cyclopentane ring Fig. (2). They are further categorized as mone-, di-, or tri-unsaturated according to the number of carbon-carbon double bonds, with the subscript 1 denoting a double bond between C-13 and C-14, 2 denoting an additional double bond between C-5 and C-6 and 3 denoting a third double bond between C-17 and C-18. The formulas for PGE₁, PGE₂ and PGE₃ are given in Fig. (3). (Frolich and Margoluis: 1981).

Prostaglandins derived from 8, 11, 14-elcosatrienoic acid carry the subscript 1; those derived from arachidonic acid carry the subscript 2; and those derived from 5, 8, 11, 14, 17-elcosapentaenoic acid carry the subscript 3.

-dilbddroxy 11-ketotetranorprosta-1,16-diodo acid, TxB2-M dinor-TxB2, PGI2-Mr dinor-6-Keto-PGF1c. 5-HPETE*5-hydroperoxy-6,8,11,14-eicosatetraenoic acid. 12-HFRTE =12-hydroperoxyacid. HET = 12-hydroxy-5,8,10-heptadecatriencic acid.6-K-PGF2c=6-Keto-PGF1c . 15-K- $H_p-PGE_p=15-keto-13,14-dihydro-PGE_p.15-kH_p$ $PGF_{2cc}=15-keto-13,14-didhydro-PGF_{2cc}$. 5,8,11,14-elcosatetraenoic acid. HETE = 12-L-hydroxy-5,8,10,14-eicosatetraenoic PGE-M = 70c -hydroxy-5,11-diketotetranorprostarl,16-diele acid. Per-Mas ,7

(Frolich and Margolius; 1981).

Fig. (4). In man, aracidonic acid is the most abundant precursor, and there is little evidence that prostaglandins of the 1 or 3 series are important. (Moncada, Flower, and Vane: 1980).

Prostaglandins, discovered initially in the seminal plasma, are synthesized in every tissue of the body.

They are ubiquitous. The seminal plasma PG's are formed in the prostate gland from which the name prostaglandin is derived. PG's are rapidly synthesized as well as inactivated and the catabolizing enzymes are distributed throughout the body. In particular, the lungs not only participate in the active synthesis of PG's but also play a major role in the catabolism of PG's released into the circulation from other organs. (Bhagavan; 1978). PG's are 20-carbon derivatives of a "parent " acid, prostancic acid which is an unnatural compound with the following structure as shown in the fellowing page (Meneada et al., 1986). (Harper et al., 1977).

Differences between various PG's are due to substituents and their configuration on the five-membered ring. Names given to the various PG's in order to differentiate them from one another consists of PG followed by a letter (e.g. PGE, PGF, etc) and a numerical subscript

Fig.3: Structures of PGE₁, PGE₂ and PGE₃. (Frolich & Margolius 1981).

Fig.4: Prostaglandin precursors. (Land, 1980)

Fig. 5: Structure of prostglanding Eand P

Central Library Ain Shams University