

COAGULATION DEFECTS IN CERTAIN TYPES OF MALIGNANCY

Thesis

Submitted in partial fulfilment for the M. D. Degree in Biochemistry

ASHRAF MAHMOUD MOURAD

Assistant Lecturer of Biochemistry Faculty of Medicine El-Minia University

Biochemistry Department Faculty of Medicine Ain Shams University

ACKNOWLEDGEMENT

Thanks to Allah The Most Helpful

Words cannot express how much I should be grateful and thankful to both Prof. Dr. SALAH EL-DIN ZAKI EID, Professor of Biochemistry and Dean of the Faculty of Medicine, Ain Shams University and Prof. Dr. STUART GORDON, Associate Professor of Medicine, Medical School, Health Sciences Center, University of Colorado, U.S.A. They suggested the title of the thesis, directed the practical work, and continuously supervised the whole work.

To Prof. Dr. HAMDY ABD ALLAH, Professor of General Surgery, Faculty of Medicine, Ain Shams University, I should be very grateful for supplying me by the malignant cases at the beginning of my research work.

I do not know how words can appreciate the help of Dr. ABD EL-MONEIM FOOLY GALAL, Assistant Professor of Biochemistry, Faculty of Medicine, El-Minia University. I owe too much to his supervision, encouragement, and advice.

Also, I wish to express to Dr. MAGDA NAGATY IBRAHIM. Assistant Professor of Biochemistry, Faculty of Medicine, Ain Shams University, my deepest thanks and gratitude for her continuous supervision and advice throughout the whole work.

My deep thanks to Dr. MAHMOUD ISMAEL HASSAN. Assistnat Professor of Biochemistry and Dr. SALWA HADAD, Assistant Professor of Pathology, Faculty of Medicine, Ain Shams University, for their continuous advice and encouragement.

It is an honour for me to express my appreciation to Dr. RICHARD MARLAR, Hematology Department, Veteran Administration Hospital, Denver, CO, for his great help in the work related to both thrombomodulin and protein S. Also, it was very kind from Dr. STEVE CARSON, Department of Pathology and Microbiology, University of Nebraska, Medical Center, Omaha, NE, U.S.A., to offer the antibody against tissue factor that was used in the factor X assay.

Lastly, I would like to express my deep and heartful gratitude for the Egyptian government for their financial support of my fellowship provided by El-Minia University and their continuous carefarant indray family in the United States of America for two years in spite of the hard economic position facing my country.

LIST OF FIGURES

Figure 1.	The pathway of blood coagulation5
Figure 2.	Homologus domains in the structures of some of the proteins involved in emostasis9
Figure 3.	Comparison between serine and cysteine proteinases34
Figure 4.	Thrombomodulin dilution curve65
Figure 5.	Characterization of polyclonal goat anti-cancer procoagulant antibody72
Figure 6.	RVV standard curve73
Figure 7.	SDS-PAGE of cancer procoagulant at various stages of purification74
Figure 8.	SDS-PAGE of cancer procoagulant purification steps
Figure 9.	Thrombomodulin standard curve77
Figure 10.	Silver stained gel of purified thrombomodulin
Figure 11.	Effect of cancer procoagulant on thrombomodulin activity
Figure 12.	Protein S standard curve81
Figure 13.	Effect of Library Ain Shams University on protein S activity82

Figure 1	14.	SDS-PAGE of protein S at different time of incubation with cancer procoagulant83
Figure 1	15.	Western blotting of protein S at various time of incubation with cancer procoagulant84
Figure 1	16.	Non-reducing SDS-PAGE of human factor X activated by both cancer procoagulant and the protease from Russell's viper venom
Figure 1	17.	SDS-PAGE of human factor X activated by cancer procoagulant after reduction with B-mercaptoethanal87
Figure 1	18.	Activation of purified factor X with a partially purified cancer procoagulant on a 10% SDS-PAGE89
Figure 1	19.	SDS-PAGE of the effect of a partia- lly purified cancer procoagulant on human factor X after inhibition of the tissue factor activity in the sample with a purified inhibitory antibody against tissue factor90

LIST OF TABLES

Table	1.	Properties of the genes, mRNA, and gene products of the components of the blood coagulation cascade4
Table	2.	Cancer procoagulant amino acid composi- composition38
Table	3.	Comparison of six amino acids of cancer procoagulant with other factor X activators
Table	4.	Amnion-chorion procoagulant amino acid composition40
Table	5.	Sources of cancer procoagulant48
Table	6.	Identification of cancer procoagulant antigen in serum of patients with active malignant disease, phase I
Table	7.	Identification of cancer procoagulant antigen in serum of patients with active malignant disease, phase II51
Table	8.	Comparison of the published amino terminal sequence of factor X _a and the sequence determined in our experiment92

LIST OF ABBREVIATIONS

vWF von Willibrant Factor

EGF Epidermal Growth Factor

LACI Lipid-Associated Coagulation Inhibitor

RVV The proteinase from Russell's Viper Venom

Gla -carboxy glutamic acid

PCA Procoagulant Activity

PCMB P-chloro-mercurial-benzoate-agarose

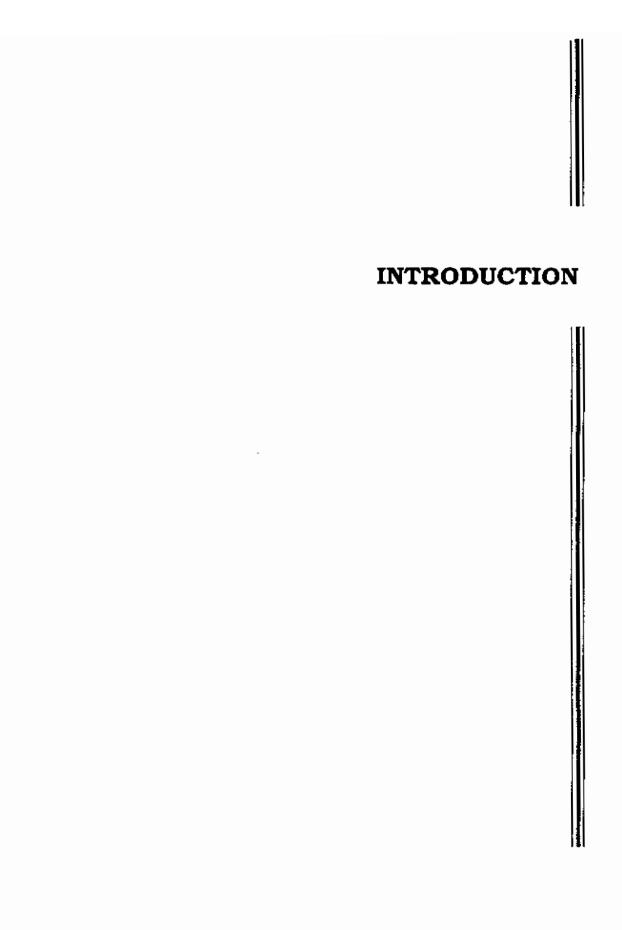
NBT Nitroblue tetrazolium

BCIP 5-Bromo, 4-chloro, 3-indolyl phosphate

SDS Sodium Dodecyl Sulfate

SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide

Slab Gel Electrophoresis

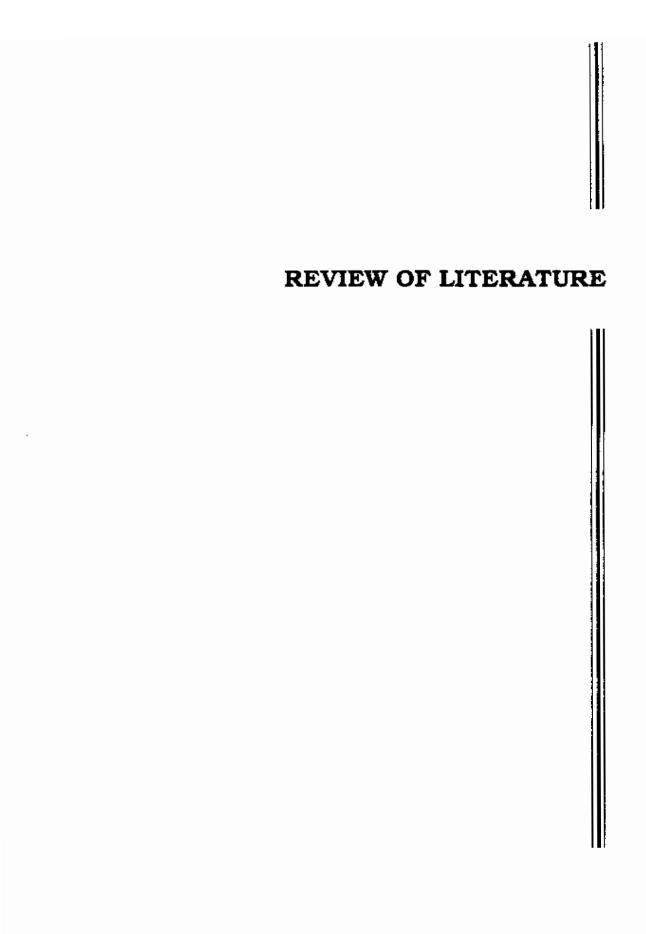

PVDF Polyvinylidene diflouride

Mr Molecular rate of migration.

Central Library - Ain Shams University Complementary Deoxyribonucleic acid.

TABLE OF CONTENTS

INTRODUCTION	1
REVIEW OF LITERATURE	3
BLOOD COAGULATION	3
The intrinsic pathway	3
The extrinsic pathway	6
The common pathway	6
Function	7
Structure	8
Tissue factor	10
Factor VII	
Factor X	12
Fibrinogen	15
PROTEIN C ANTICOAGULANT PATHWAY	
Thrombomodulin	16
Protein C	18
CANCER CELL PROCOAGULANT ACTIVITY	
CANCER CELL PROCOAGULANT ACTIVITI	20
Fibrin deposition in cancer	20
CANCER PROCOAGULANT	23
Discovery	31
Mechanism of action	
Purification	
Isolation from a human source	
Identification in tissue samples	
Identification in culture cells	
Identification in melanoma	
Identification in acute leukemia	44
Potential in cancer therapy	45
Potential tumor marker	47
AIM OF THE WORK	52
MATERIAL AND METHODS	54
RESULTS	71
DISCUSSION	92
CONCLUSION	96
SUMMARY	
REFERENCES	98



INTRODUCTION

Different effects on blood coagulation are known to be associated with malignancies in experimental animals, tissue culture cells, and human. Evidence has been accumulated to suggest that inhibition of blood coagulation is effective in decreasing the incidence of metastatic formation and can even cause suppression of the growth of the tumor. Malignant cells are known to produce various materials (procoagulants) that can affect blood coagulation at various sites of the cascade. Various types of these procoagulants have been described. In this review of the literature, I will describe the general mechanism of blood coagulation and the properties of some coagulation factors that are known to be affected in malignancy. I will also describe the properties of the proteins constituting a pathway that is important in the regulation of blood coagulation, the protein C anticoagulant pathway. Finally, I will discuss the different properties of cancer procoagulant.

This will explain the importance of studying the effect of cancer procoagulant on the blood coagulation human factor X and on the two cofactors of the protein C anticoagulant pathway, thrombomodulin and protein S.

Studying the effect of cancer procoagulant on its natural substrates could provide the information required to synthesize a specific substrate or inhibitor for cancer procoagulant that can be applied for the diagnosis and probably the treatment of malignancy.

BLOOD COAGULATION

Blood coagulation is a type of host defense system composed of a complex response of the vascular system, circulating platelets and monocytes, coagulation proteins, and the fibrinolytic system towards blood vessel injury. The activation of the proenzymes (designated by Roman numeral, e.g. XII) of blood coagulation to their active enzyme forms (designated by "a" after the Roman numeral, e.g. XIIa) proceeds through either the extrinsic or the intrinsic pathway (Davie and Ratnoff, 1964; and MacFarlane, 1964).

In these blood coagulation pathways many of the enzyme reactions take place within complexes that are associated with cell membranes; for example factor X activation takes place in factor VIIIa, IXa, and X complex when VIIIa is associated with a cell membrane or a phospholipid bilayer. Phospholipid in in vitro experiments replaces the cell membrane in vivo.

The intrinsic pathway: The intrinsic pathway of blood coagulation was given the name "intrinsic" because all of required proteins are in the blood. In contrast, the extrinsic pathway requires a glycoprotein associated with the cell membrane of many tissues. The intrinsic pathway (figure 1) is activated in the presence of a

Table 1. Properties of the genes, mRNA and gene products of the components of the blood coagulation cascade (Furie and Furie, 1988).

Component	Molecular weight	Gene (Kb)	mRNA (Kb)	Plasma conc. (µg/ml)	Function
Prothrombin Factor X Factor IX Factor VII Factor VIII Factor XI Factor XI Factor XII Fibrinogen Aa chain BB chain chain Protein C Protein S	72,000 56,000 56,000 50,000 330,000 330,000 160,000 80,000 340,000 66,000 52,000 46,000 62,000 80,000	21 22 34 31 185 23 12	2.1 1.5 2.8 2.4 9.0 7.0 2.4	100.0 10.0 5.0 0.5 0.1 10.0 5.0 30.0 3000.0	Proteinase zymogen Proteinase zymogen Proteinase zymogen Proteinase zymogen Cofactor Cofactor Proteinase zymogen Proteinase zymogen Structural Proteinase zymogen Cofactor
vWF Tissue factor	225,000x n ^a 37,000	175	8.5 2.1	10.0 0.0	Adhesion Cofactor/initiator

 n^a = number of subunits , where the subunit Mr is 225,000.