METABOLISM OF AFLATOXINS IN SHEEP

BY

MONA MOHAMED ABDEL GELIL

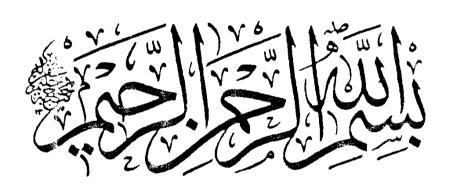
B. Sc. Agric. (Animal Production), 1978 Cairo University

THESIS

Submitted in Partial Fulfillment for the Requirements for the Degree of MASTER OF SCIENCE


IN

ANIMAL PRODUCTION


Ain Shams University

Faculty of Agriculture

1987

Prof. Dr. EL ASHRY M. A. ()
Proffesor of Animal Nutration, Facu	ty of Agriculture, Ain Shams University
Prof. Dr. EL SERAFY A. M. ()
Proffesor of Animal Nutration, Faculty o	f Agriculture, Ain Shams University
Prof. Dr. ALLAM S. (········)
Proffesor of Animal Nutration, Faculty o	f Agriculture. Cairo University
	(Committeein Charge)

ACKNOWLEDGEMENT

ACKNOWLEDGMENT

With deepest feeling of gratituide, I wish to acknowledge the supervision, encouragement and helpful criticism given by Prof. Dr. EL-ASHRY, M.A., Prof. of Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University.

I want to express my deep appreciation to Prof.Dr. KHAYRIA NAGUIB, The head of mycotoxins Lab., National Research Centre, for her encouragement, criticism and kindness.

My thanks are also due to Dr. MAGDI M. SAAD, Mycotoxins Lab., National Research Centre for his sincer help, suggesting the problem and preparing the manuscript.

Finally, I wish to dedicate this thesis to MY PARENTS for their blessedness, kind understanding and love.

CONTENTS

			Page
REVI	EW C	OF LITERATURE.	
*	His	torical aspect on aflatoxins and aflatoxicosis	3
	Fun	gi which produce aflatoxins	5
	Fac	etors influencing production of aflatoxins	6
	a)	The fungus	6
	b)	The substrate	8
		Relative humidity and moisture	8
	c)	Temperature and time	9
	d)	Maturity and damage	10
	e)	Aeration	10
	f)	Microbial Interaction	11
*	Che	mistry of aflatoxins and mode of action	12
*	Tox	cicological aspect of mycotoxins	14
* Toxicology of aflatoxins		icology of aflatoxins	16
	a)	General form of aflatoxins	16
	b)	Animal species susceptibility to aflatoxins	16
	c)	Forms of aflatoxicosis	17
	d)	Absorption and metabolism of aflatoxin B_1, \ldots	18
	e)	Excertion of aflatoxin B_1	20
*	Bio	logical aspect of aflatoxin B ₁	23
*	Af1	atoxin residues in animal products	24
*	Control of aflatoxin B_1 , decontamination and		
	pre	vention.	26

MATI	ERIAL	AND METHODS Pa	ge
	(1)	Plan of experiment	29
	(2)	Animals and their management	30
		a) Animals	30
		b) Feeding and watering	30
	(3)	Preparation of contaminated corn	32
	(4)	Collection of samples	33
		a) Blood	33
		b) Rumen samples	33
	(5)	Digestibility and nitrogen balance trial	33
	(6)	Excreta sampling for aflatoxins detection	34
	(7)	Analytical methods	34
	(8)	Determination of aflatoxins input and output	35
		a) Purity of aflatoxin standards	35
		b) Preparation of aflatoxin solution 3	35
	(9)	Preparation and extraction of samples 3	36
ጙ	Stat	istical analysis	3 7

RESULTS AND DISCUSSION			Page
	*	Effect of aflatoxin-contaminated rations on the	J
		performance of Rahmani ewes	38
	*	Effect of aflatoxin-contaminated rations on the	
		digestibility of different nutrients	44
	*	Effect of aflatoxin-contaminated rations on	
		nitrogen balance and utilization of nitrogen	
		intake	48
	*	Rumen liquor parameters	52
		- PH values of rumen liquor	52
		- Ammonia nitrogen concentration(mg/100 ml) of	
		rumen liquor	55
		- Total nitrogen concentration (mg/100 ml) of	
		rumen liquor	61
		- Total volatile fatty acids concentration (mg/	
		100 ml) of rumen liquor	65
	*	Effect of aflatoxins-contaminated rations on	
		some blood serum components	69
	*	Aflatoxins intake and aflatoxins excreted in	
		faeces and urine of both treated groups	89
	REFEI	RENCES	97

LIST OF TABLES

			Page
Table	1	Chemical composition of feed	31
Table	2	Average body weight changes	39
Table	3	Feed consumption and efficiency	43
Table	4	Digestibility Co-efficients	45
Table	5	N-intake	49
Table	6	Rumen liquor PH	53
Table	7	Rumen liquor ammonia-N	56
Table	8	Rumen liquor total-N	62
Table	9	Rumen liquor VFA'S	66
Table	10	Blood serum total protein and urea	
Table	11	Blood serum bilirubin, and creatinine	70 76
Table	12	Blood serum Albumin and globulin	76 82
		D	U4

INTRODUCTION

- 1 -

INTRODUCTION

Human health has been dramatically affected in outbreaks of acute aflatoxicosis, but these targic events my be only a part of the cost to society in terms of impaired health and productivity from the ingestion of sub-lethal levels of aflatoxins. People under malnutrition would suffer ever so much more from mycotoxins as the well-cared for. The international reports confirmed this facts which revealed that aflatoxicosis outbreaks involved wide-spread areas involved both developed and developing countries.

The economic losses resulting from aflatoxin contaminated foods and feeds is difficult to estimate but undoubtedly is large judging from the widespread occurrence of aflatoxin contamination and the large number of commodities affected.

A survey study was conducted in Egypt on foods and feedstuffs reported positive results of aflatoxins contaminated feeds. Losses come about in many ways: from direct food looses and reduced productivity, from livestock looses, from deaths and lower growth rates and feed efficiency, and indirect costs of systems for control of aflatoxins in foods and feeds.

The differences in responses to aflatoxins in different animals has been attributed to their differential metabolism.

The rate of metabolism are an important factor in determining the type of toxic action of aflatoxins. However, once aflatoxin is in the liver and it is metabolized slowly, the unchanged molecule is available for conversion to an epoxide and the animals susceptibility to the chronic dffects of aflatoxins becomes more mainfest.

Little is known, however, of health effects resulting from short term and high level exposure to aflatoxins in different livestocks, but no available literature dealing with long term and low levels exposure to aflatoxins in sheep.

Therefore, the present work was conducted to study the metabolism of aflatoxins (B_1 B_2 G_1 and G_2) in sheep. This work include microbiological, nutritional and biochemical studies. Also, it is an attempt to shed more light on the cummulative effect of aflatoxins in sheep when feefing on contaminated rations.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

Historical aspect on aflatoxins and aflatoxincosis:

Sargent et al . (1961) was the first who observed that large numbers of turkey poults and ducklings in British farms had died as a result of consuming contaminated groundnut meals imported from Brazil.

The lethal agents was initially isolated from groundnut meals and suspected to be produced by the common mould <u>Aspergillus Flavus</u>. That toxic metabolite "aflatoxin "not only responsible for hepatotxicity in farm animals but also was carcinogenic to animals fed on contaminated meals (Allcroft and Carragham, 1963).

Evidence was soon given by the several groups of investigators that the toxin obtained after paper chromatography was a complex mixture. Nesbitt <u>et al</u> .(1962) Succeeded in further resolving on alumina chromatoplates, two spots were obtained on filter paper. One had an R_F value of approximately 0.6 and showed a blue-violet fluorescence and the other with somewhat lower R_F value with green fluorescence, these two referred to as aflatoxin B and aflatoxin G, respectively. Arae <u>et al</u>. (1963) established the structural formulae of aflatoxin R_F R_F

Isolation and characterization of four closely related metabolites were first reported by Hartely et al. (1963).

They separated the four compounds on silica gel chromatoplates using chloroform-methanol as developing solvent. These compounds designated aflatoxins B_1 B_2 G_1 and G_2 because of their blue and green fluorescent and their decreasing R_F values. The occurrence of aflatoxins other than B_1 B_2 G_1 and G_2 has been found in extracts from milk and urine of mammals and from cultures of <u>Aspergillus flavus</u> grown on natural and synthetic substrates (Allcroft and Carragham, 1963). Moreover, Allcroft <u>et al</u>. (1966) designated the milk toxin as "aflatoxin M" after finding it in the liver, kidney, and urine of sheep dosed with a mixture of aflatoxins B_1 B_2 G_1 and G_2 .

Aflatoxins have been found to be naturally occurring in commodities other than peanut and cottonseed cake (Loosmore et al., 1965).

In feed samples collected from various parts of the world, particularly from Africa and Asia, aflatoxins were detected at biologically significant levels in a wide spectrum of commodities including barley, cassava, corn, cotton-seed, cowpeas, millet, peanut, peas, rice, sesame, sorghum, soybean and wheat (Wogan, 1965 and Shotwell et al., 1968). It is likely that aflatoxins will continue to be found in food and feedstuffs, wherever circumstances were favourable for fungal growth such as warm and moist wheather conditions and faulty or inadequate storage facilities (Wogan, 1965).