

Thesis

Submitted in partial fulfillment for the M.D. degree of Radiodiagnos Erocial

57183

By

Oahlia Mamdouh Oalam M.B., B.Ch., M.Sc.

616.0757

Supervisors

Dr. Youssef Hamed Zaki

Professor of Radiodiagnosis Faculty of Medicine - Ain Shams Universit

Dr. Hisham Mahmoud Mansour

Lecturer of Radiodiagnosis Faculty of Medicine - Ain Shams University

1994

OFOICATEO TO MY PARENTS

ACKNOWLEOGMENT

I am greatly honored that I have worked under the supervision of Prof. Or. Youssef Hamed Zaki, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University. Without his guidance, kind help and constructive criticism, the accomplishment of this work could not be a fact. So, I am indeed grateful to him.

I am also deeply grateful to Professor Or. Zeinab Abdallah, head of Radiodiagnosis department. Faculty of Medicine. Ain Shams University, for her unfailing advice and moral support.

I am also deeply indebted to Or. Hisham Mahmoud Mansour. Lecturer of Radiodiagnosis, Faculty of Medicine. Ain Shams University, for his good advice, help and suggestions.

Also, my thanks to Or. Yasser Abbas, Faculty of Medicine. Lecturer of Radiodiagnosis, Ain Shams University, who supported me all through the work.

I would like to express my sincere gratitude to all Professors and Staff members as well as my colleagues of the Radiodiagnosis department. Faculty of Medicine, Ain Shams University.

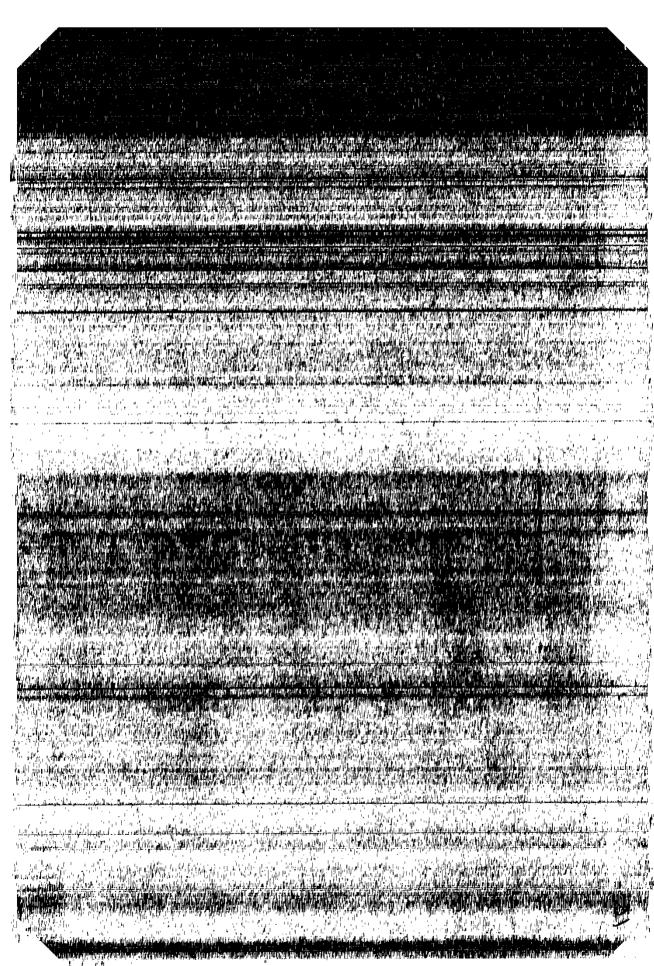
TABLE OF CONTENTS

	PA GE
Introduction and Aim of work	1
Review of Litrature	
Historical Review	2
CT Anatomy of the Liver	19
Pathology of Hepatic Tumors	36
. Material and Methods	53
Results	65
. Illustrative Cases	88
. Discussion	146
. Summary and Conclusion	174
References	179
Arabic Summary	

List	of	Tables

			Page
Table		Different porotocols for dynamic hepatic CT	18
Table		Classification of primary hepatic tumors	37
Table		- 26 - mile distribution	53
Table	4-2:	Single main clinical presentation	54
Table	4-3:	How the final diagnosis was established	55
Table	4-4:	Final diagnosis	5.5
Table	4-5:	Different modalities used	56
Table	4-6:	Different dynamic studies done	57
Table	4-7:	Calculation of the dose	58
Table	4-8:	Modes of injection	59
Table	4-9:	Programmes of incremental dynamic study	60
Table	4-10:	Programmes of single level dynamic study	62
Table	4-11:	Pattern of dynamic serio scan distribution	62
Table	4-12:	Difficulties and pitfalls	63
Table	5-1:	Summary of the different groups	65
Table	5-2:	Hemangiomas mean diameters using the different modalities	68
Table	5-3a,b,c:	CT findings of the 21 cases of hemangiomas	70
Table	5-4:	Hemangiomas mean numbers using different modalities	71
Table	5-5a,b,c:	CT findings of the 21 HCCs	7.4
Table	5-6:	Characteristic CT findings of the 21 HCCs in dynamic and	
		early delay studies	75
Table	5 - 7 :	HCCs mean diameters using the different modalities	77
Table	5-8:	HCCs mean number using the different modalities	77
Table	5-9a,b,c:	CT findings of the 13 cases of metastases	79
Table	5-10:	Metastases mean diameter using different modalities	81
Table	5-11:	Metastases mean number using different modalities	81
Table	5-12:	Different patterns of contrast enhancement encountered in	
		our study	85
Table	5-13:	Mean diameter of all lesions in the 66 cases	86
Гable	5-14:	Mean number of all lesions in the 66 cases	86

		List of Figures	
		3	Page
Fig.	1-1:	Porotocol of dynamic CT by Foley 1983.	3
Fig.	1 - 2:	Graph demonstrating CT attenuation value of aorta and	
		liver.	4
Fig.	1-3:	Graph demonstrating bolus injection of contrast, contrast	
		material pharmacokinetics and timing of dynamic CT.	8
Fig.	1-4,5:	Graphs demonstrating enhancement of aorta and liver by	
		Cox et al. and Walkey (1991).	13
Fig.	1-6:	Graph presenting different porotocols of contrast material	
		administration.	14
Fig.	1 - 7:	Hepatic enhancement curves for the same two injection	
		porotocols	14
Fig.	2-1:	Normal CT anatomy	19
Fig.	2-1:	Normal CT anatomy	21
Fig.	2-2:	Normal CT anatomy	23
Fig.	2-3:	Normal segmental anatomy	25
Fig.	2-4:	Ligamentum teres	27
Fig.	2-5:	Hepatic artery and portal anatomy	29
Fig.	2-6:	Interlobar fissure	31
Fig.	2 - 7:	Hepatic veins	33
Fig.	5-1:	Average density values of all studied hemangiomas	67
Fig.	5-2:	Hemangiomas' mean diameters using the different	
		modalities	69
Fig.	5-3:	Hemangiomas, HCC, and metastases mean numbers using	
		different modalities	69
Fig.	5-4:	HCCs' mean diameters using the different modalities	76
Fig.	5-5:	Metastases' mean diameters using different modalities	80
Fig.	5-6,7,8:	Patterns of contrast enhancement of hemangiomas. HCC.	
		Metastasis	84


			Page
Fig.	6-1a,b,c:	Cavernous hemangioma of right hepatic lobe	88
Fig.		Cavernous hemangioma of right hepatic lobe	90
Fig		Cavernous hemangioma of the posterior segment of right	
		hepatic lobe	92
Fig.	6-3a,b:	Giant cavernous hemangioma at right hepatic lobe	94
Fig.		Giant cavernous hemangioma at right hepatic lobe	96
Fig.		Multiple cavernous hemangiomata of the right hepatic lobe	98
Fig.	6-4d,e,f:	Multiple cavernous hemangiomata of the right hepatic lobe	100
Fig.	6-5a,b:	Right hepatic lobe cavernous hemangioma with associated	
		diffuse fatty liver	102
Fig.	6-5c,d:	Right hepatic lobe cavernous hemangioma with associated	
		diffuse fatty liver	104
Fig.6	5-6a,b,c,d,e:	Cavernous hemangioma in a cirrhotic liver	106
Fig.	6-7a,b,c,d:	Simple right hepatic lobe cyst	108
Fig.	6-8a,b,c,d:	Multiple hepatic simple cysts	110
Fig.	6-9a,b,c,d,e:	Hepatic adenoma	112
Fig.		Hepatocellular carcinoma	114
Fig.	6-11a,b,c,d:	Hepatocellular carcinoma	116
Fig.6	-12a,b,c,d,e:	Hepatocellular carcinoma	118
Fig.	6-13a,b:	Hepatocellular carcinoma	120
Fig.	6-13c,d:	Hepatocellular carcinoma	122
Fig.	6-14a,b,c,d:	Hepatocellular carcinoma	124
Fig.	6-15a:	Hepatocellular carcinoma	126
Fig.	6-15b,c,d:	Hepatocellular carcinoma	128
Fig.	6-16a,b,c:	Metastastic small cell undifferentiated carcinoma	130
Fig.	6-17a,b:	Metastases from carcinoma of the breast with focal fatty	
		infiltration	132

			Page
Fig.	6-17c,d:	Metastases from carcinoma of the breast with focal fatty	
		infiltration	134
Fig.	6-17e:	Metastases from carcinoma of the breast with focal fatty	
		infiltration	136
Fig.	6-18a,b,c:	Non-Hodgkin's lymphoma	138
Fig.	6-19a,b:	Epithelioid hemangioendothelioma	140
Fig.	6-19c.d:	Epithelioid hemangioendothelioma	142
Fig.	6-20a,b:	Liver cirrhosis	144

ABSTRACT

A dynamic CT study in which an IV bolus injection of an average dose of 45 g iodine was injected manually, followed by dynamic fast scanning. The study was conducted on 66 patients with suspected hepatic tumors; 19 women; 47 men, their ages ranged between 13-70 years. 29 cases had benign lesions while 37 cases had malignant lesions. Certain criteria of enhancement patterns of hepatic tumors were used in their characterization in general, and differentiating malignant entities from the most benign hepatic neoplasm, cavernous hemangioma in particular.

INTRODUCTION AND AIM OF WORK

INTRODUCTION AND AIM OF WORK

In many cases, hepatic tumors do not provide sufficient intrinsic contrast to be detected with nonenhanced CT studies. A contrast enhanced technique has been developed for hepatic CT, that exploits differences in vascularity and in interstitial diffusion of contrast material between normal hepatic parenchyma and hepatic tumors.

During the past decade, we have experimented with faster computed tomographic (CT) scanning techniques and new methods of administration of contrast material to improve our diagnostic ability.

Different hepatic tumors can be differentiated accurately by bolus dynamic scanning if standard CT techniques, methods of contrast medium administration and strict morphologic criteria are used for evaluation and diagnosis.

For most focal liver lesions which are hypovascular in relation to normal hepatic parenchyma, bolus contrast material enhancement and dynamic scanning improve lesion detectablity.

The aim of this work is to emphasize the role of dynamic CT study in the detection and evaluation of hepatic tumors.

REVIEW OF LITERATURE

HISTORICAL REVIEW